Assessment of metal contamination in the biota of four rivers experiencing varying degrees of human impact

  • Gretchen K. Bielmyer-Fraser
  • Matthew Neal Waters
  • Christina G. Duckworth
  • Pratik P. Patel
  • Benjamin Cole Webster
  • Amber Blocker
  • Cliff Hunter Crummey
  • Aundrea Nicole Duncan
  • Somuayiro Nadia Nwokike
  • Codie Richard Picariello
  • James T. Ragan
  • Erika L. Schumacher
  • Rebecca Lea Tucker
  • Elizabeth Ann Tuttle
  • Charlie Rufus Wiggins
Article
  • 253 Downloads

Abstract

Urbanization, agriculture, and other land transformations can affect water quality, decrease species biodiversity, and increase metal and nutrient concentrations in aquatic systems. Metal pollution, in particular, is a reported consequence of elevated anthropogenic inputs, especially from urbanized areas. The objectives of this study were to quantify metal (Cu, Al, Cd, Ni, and Pb) concentrations in the waters and biota of four streams in South Georgia, USA, and relate metal concentrations to land use and abiotic and biotic stream processes. Additionally, macrophytes, invertebrates, and fish were identified to assess biodiversity at each site. Metal concentrations in the three trophic levels differed among sites and species, correlating to differences in land use surrounding the rivers. The highest metal concentrations (except Al) were found in the streams most impacted by urbanization and development. Al concentrations were highest in streams surrounded by land dominated by forested areas. Metal content in macrophytes reflected metal concentrations in the water and was at least three orders of magnitude higher than any other trophic level. Despite metal concentration differences, all four streams contained similar water quality and were healthy based on macroinvertebrate community structure. This study provides insight into the impact of urbanization and the fate and effects of metals in river ecosystems with varying degrees of anthropogenic impact.

Keywords

Streams Land use Metals Biota Water quality 

Notes

Acknowledgements

Funding of this project was provided by a Valdosta State University Quality Enhancement Program grant and the Biology Department. The authors would also like to thank Mathew Cannister from the U.S. Geological Survey for making the map in Fig. 1.

References

  1. Barnett, J., Bechler, D.L., Denizman, C., Grable, J., Nienow, J., Turco, J., Tietjen, W., & Wood, G. L. (2007). Watershed restoration action strategy development in the Alapahoochee River watershed. Nonpoint Source Management Program, Section 319 Report. Environmental Protection Division, Department of Natural Resources, Georgia. 92 pp.Google Scholar
  2. Behnke, A. C. (1990). A perspective on America’s vanishing streams. Journal of the North American Benthological Society, 9, 77–88.CrossRefGoogle Scholar
  3. Bielmyer, G. K., Tomasso, J., Gatlin, D., Isely, J., & Klaine, S. J. (2005). Responses of hybrid striped bass to waterborne and dietary copper in freshwater and saltwater. Comparative Biochemistry and Physiology-Part C, 140, 131–137.Google Scholar
  4. Bielmyer, G. K., Tomasso, J., & Klaine, S. J. (2006). Physiological responses of hybrid striped bass to aqueous copper in freshwater and saltwater. Archives of Environmental Contamination and Toxicology, 50, 531–538.CrossRefGoogle Scholar
  5. Bielmyer, G. K., & Grosell, M. (2011). Emerging issues in marine metal toxicity. In Bury, N., & Handy, R., (Eds.), Essential Reviews in Experimental Biology vol. 2, (pp. 129–158). London: Kings College.Google Scholar
  6. Blanchard, J., & Grosell, M. (2005). Effects of salinity on copperaccumulation in the common killifish (Fundulus heteroclitus). Enviromental Toxicology and Chemistry, 24, 1403–1413.CrossRefGoogle Scholar
  7. Bury N. R., Walker, P. A., & Glover, C. N. (2003). Nutritive Metal Uptake in Teleost Fish. Journal of Experimental Biology, 206, 11–23.Google Scholar
  8. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In Tessier, A. & Turner, D. R. Metal Speciation and Bioavailability in Aquatic Systems.New York: John Willy & Sons.Google Scholar
  9. Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.CrossRefGoogle Scholar
  10. Chowdhury, M. J., Grosell, M., McDonald, D. G., & Wood, C. M. (2003). Plasma clearance of cadmium and zinc in non-acclimated and metal-acclimated trout. Aquatic Toxicology, 64, 259–275.CrossRefGoogle Scholar
  11. City of Valdosta (2010). Master stormwater management plan. Valdosta, GA.Google Scholar
  12. Correll, D. L. (1983). N and P in soils and runoff of three coastal plain land uses. Nutrient cycling in agricultural ecosystems (pp. 207–224). Athens, Georgia: University of Georgia Press.Google Scholar
  13. Correll, D. L., Jordan, T. E., & Weller, D. E. (1992). Nutrient flux in a landscape: effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries, 15, 431–442.CrossRefGoogle Scholar
  14. Dallinger, R., Prosi, F., Segner, H., & Back, H. (1987). Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia, 73, 91–98.CrossRefGoogle Scholar
  15. Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 20(10), 2383–2396.CrossRefGoogle Scholar
  16. Donnachie, R. L., Johnson, A. C., Moeckel, C., Pereira, M. G., & Sumpter, J. P. (2014). Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Environmental Pollution, 194, 17–23.CrossRefGoogle Scholar
  17. Earley, S. M. (2015). The paleolimnology of Long Pond. GA, USA: Linking biogeochemical processes to historic primary producer communities p. 76.Google Scholar
  18. Echols, K. R., Meadows, J. C., & Orazio, C. E. (2009). Pollution of aquatic ecosystems II: hydrocarbons, synthetic organics, radionuclides, heavy metals, acids, and thermal pollution. In G. E. Likens (Ed.), Encyclopedia of inland waters (pp. 120–128). Cambridge: Elsevier/Academic Press.CrossRefGoogle Scholar
  19. Eisler, R. (1988a). Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. Laurel (MD): U.S. Fish and Wildlife Service (USFWS), Patuxent Wildlife Research Center 34. 95.Google Scholar
  20. Eisler, R. (1988b). Lead hazards to fish, wildlife, and invertebrates: a synoptic review. Laurel (MD): U.S. Fish and Wildlife Service (USFWS), Patuxent Wildlife Research Center 14. 94.Google Scholar
  21. Eisler, R. (1996). Silver hazards to fish, wildlife, and invertebrates: a synoptic review. Laurel (MD): U.S. Fish and Wildlife Service (USFWS), Patuxent Wildlife Research Center 32. 63.Google Scholar
  22. Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin: Springer-Verlag 486.Google Scholar
  23. Gong, D. C., Gao, X., Ntakirutimana, T., Guo, J. S., & Li, K. (2013). Water quality status along the Liangtan River and control planning alternatives for pollution reduction. Polish Journal of Environmental Studies, 22, 1061–1067.Google Scholar
  24. Gonzalez, H., Pomares, M., Ramirez, M., & Torres, I. (1999). Heavy metals in organism and sediments from the discharge zone of the submarine sewage outfall of Havanna city, Cuba. Marine Pollution Bulletin, 38, 1048–1051.CrossRefGoogle Scholar
  25. Grubaugh, J. W., & Wallace, J. B. (1995). Functional structure and production of the benthic community in a Piedmont river: 1956-1957 and 1991-1992. Limnology and Oceanography, 40, 490–501.CrossRefGoogle Scholar
  26. Guzman, H. M., & Jimenez, C. E. (1992). Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Marine Pollution Bulletin, 24, 554–561.CrossRefGoogle Scholar
  27. Hemond, H. (2000). Chemical fate and transport in the environment. Elsevier Science Publishing Company Inc., 156–157.Google Scholar
  28. Hoyer, M. V., & Canfield, Jr., D. E. (1994). Handbook of common freshwater fish in Florida lakes. University of Florida, Institute of Food and Agricultural Sciences.Google Scholar
  29. Jarvis, T. A., & Bielmyer-Fraser, G. K. (2015). Accumulation and effects of metals in two seaweed species. Comparative Biochemistry and Physiology-Part C, 171, 28–33.Google Scholar
  30. Jarvis, T. A., Lockhart, J. M., Loughry, W. J., & Bielmyer, G. K. (2013). Metal accumulation in wild nine-banded armadillos. Ecotoxicology, 22, 1053–1062.CrossRefGoogle Scholar
  31. Jordan, T. E., Correll, D. L., & Weller, D. E. (1997a). Nonpoint source discharges of nutrients from Piedmont watersheds of Chesapeake Bay. Journal of the American Water Resource Association, 33, 631–646.CrossRefGoogle Scholar
  32. Jordan, T. E., Correll, D. L., & Weller, D. E. (1997b). Relating nutrient discharges from watersheds to land use and streamflow variability. Water Quality Research, 33, 2579–2590.Google Scholar
  33. Klee, R. J., & Graedel, T. E. (2004). Elemental cycles: a status report on human or natural dominance. Annual Review of Environment and Resources, 29, 69–107.CrossRefGoogle Scholar
  34. Klein, R. D. (1979). Urbanization and stream quality impairment. Water Resource Bulletin, 15, 948–963.CrossRefGoogle Scholar
  35. Kumar, J. I. N., Soni, H., Kumar, R. N., & Bhatt, I. (2008). Macrophyte in phytoremediation of heavy metal contaminated water and sediments in Pariyej community reserve, Gujarat, India. Turkish Journal of Fisheries and Aquatic Sciences, 8, 193–200.Google Scholar
  36. Lenat, D. R., & Crawford, J. K. (1994). Effects of landuse on water-quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia, 294, 185–199.CrossRefGoogle Scholar
  37. Mangun, W. R. (1989). A comparison of five Northern Virginia (USA) watersheds in contrasting land use patterns. Journal of Environmental Systems, 18, 133–151.CrossRefGoogle Scholar
  38. McGeer, J. C., Brix, K. V., Skeaff, J. M., DeForest, D. K., Brigham, S. I., Adams, W. J., & Green, A. (2003). Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environmental Toxicology and Chemistry, 22, 1017–1037.CrossRefGoogle Scholar
  39. Mortimer, D. C. (1985). Freshwater aquatic macrophytes as heavy metal monitors—the Ottawa River experience. Environmental Monitoring and Assessment, 5, 311–323.CrossRefGoogle Scholar
  40. Mulder, J., van Breemen, N., & Eijck, H. C. (1989). Depletion of soil aluminum by acid deposition and implications for acid neutralization. Nature, 337, 247–249.CrossRefGoogle Scholar
  41. Ndeda, L. A., & Manohar, S. (2014). Bio concentration factor and translocation ability of heavy metals within different habitats of hydrophytes in Nairobi Dam, Kenya. IOSR-Journal of Environmental Science, Toxicology and Food Technology, 8, 42–45.Google Scholar
  42. Peierls, B. L., Caraco, N. F., Pace, M. L., & Cole, J. J. (1991). Human influence on river nitrogen. Nature, 350, 386–387.CrossRefGoogle Scholar
  43. Phillips, D. J. H., & Rainbow, P. S. (1993). The biomonitoring of trace metals and radionuclides. Biomonitoring of trace aquatic contaminants (pp. 189–192). Oxford: Elsevier Science.CrossRefGoogle Scholar
  44. Pratt, J. M., Coler, R. A., & Godfrey, P. J. (1981). Ecological effects of urban stormwater runoff on benthic invertebrates inhabiting the Green River, Massachusetts. Hydrobiologia, 83, 29–42.CrossRefGoogle Scholar
  45. Pyati, R., Bielmyer, G. K., Chalk, S., McCarthy, D., McCarthy, H., Pinto, G., Sonnenberg, L., & Welsh, P. (2012). “Case study: St. Johns River Basin, USA,” fourth United Nations world water development report, world water assessment programme 2012. Paris: UNESCO Publishing.Google Scholar
  46. Rainbow P. S., & Dallinger R. (1993). Metal uptake, regulation, and excretion in freshwater invertebrates. In Dallinger, R., & Rainbow, P.S., (Eds.), Ecotoxicology of Metals in Invertebrates (pp. 119–131). Boca Raton: Lewis Publishers.Google Scholar
  47. Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156.CrossRefGoogle Scholar
  48. Roy, A. H., Rosemond, A. D., Paul, M. J., Leigh, D. S., & Wallace, J. B. (2003). Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biology, 48, 329–346.CrossRefGoogle Scholar
  49. Sanches Filho, P. J., Nunes, L. V., Rosa, D. A., Betemps, G. R., & Pereira, R. S. (2015). Comparison among native floating aquatic macrophytes for bioconcentration of heavy metals. Ecotoxicology and Environmental Contamination, 10, 1–6.CrossRefGoogle Scholar
  50. Schuurkes, J. A. A. R., Heck, C. C., Hesen, P. L. G. M., Leuven, R. S. E. W., & Roelofs, J. G. M. (1986). Effects of sulphuric acid and acidifying ammonium desposition on water quality and vegetation of simulated soft water ecosystems. Water, Air, & Soil Pollution, 31, 267–272.CrossRefGoogle Scholar
  51. Southwest Florida Water Management District (2009). Southwest Florida Water Management District Land Use and Cover. Brooksville, FL.Google Scholar
  52. Shyn, A., Chalk, S. J., Smith, K., Charnock, N., & Bielmyer, G. K. (2012). Zinc Distribution in the Organs of Adult Fundulus heteroclitus After Waterborne Zinc Exposure in Freshwater and Saltwater. Archives of Environmental Contamination and Toxicology 63, 544–553.Google Scholar
  53. State and County QuickFacts, 2012. http://www.census.gov/quickfacts/table/PST045215/13185. January\15\2016
  54. Terrell, C. R. & Perfetti, P. B. (1996). Water quality indicators guide. Surface waters. Terrene Institute. Washington, D.C. second edition.Google Scholar
  55. Tyler, G., Balsberg Pahlsson, A. M., Bengtsson, G., Baath, E., & Tranvik, L. (1989). Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water, Air, & Soil Pollution, 47, 189–215.CrossRefGoogle Scholar
  56. USEPA (1984). Ambient water quality criteria for lead. U.S. Environmental Protection Agency. Washington, DC: Office of Water Regulations and Standards.Google Scholar
  57. USEPA (1986). Ambient water quality criteria for nickel. U.S. Environmental Protection Agency. Washington, DC: Office of Water Regulations and Standards.Google Scholar
  58. USEPA (1987). Ambient aquatic life water quality criteria for silver. EPA-440/5-87-011.Google Scholar
  59. USEPA. (2007). Aquatic life ambient freshwater quality criteria copper—2007 revision. EPA-822-R-07-001.Google Scholar
  60. USEPA. (2016). Aquatic life ambient water quality criteria cadmium—2016. EPA-820-R-16-002.Google Scholar
  61. Van Breemen, N., & van Dijk, H. F. G. (1988). Ecosystem effects of atmospheric deposition of nitrogen in The Netherlands. Environmental Pollution, 54, 249–274.CrossRefGoogle Scholar
  62. Vardanyan, L. G., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32, 208–218.CrossRefGoogle Scholar
  63. Vazquez, M. D., Fernandez, J. A., Lopez, J., & Carballeira, A. (2000). Effects of water acidity and metals concentration on accumulation and within-plant distribution of metals in the aquatic bryophyte Fontinalis antipyretica. Water, Air, & Soil Pollution, 120, 1–19.CrossRefGoogle Scholar
  64. Venkatesha, R., Somashekar, R. K., & Prakash, K. L. (2013). Biomonitoring of metals in freshwatermacrophytes and benthic organisms. International Journal of Innovative Research and Science, Engineering and Technology, 2, 4661–4669.Google Scholar
  65. Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). International journal of Environmental Science and Technology, 5, 179–182.CrossRefGoogle Scholar
  66. Vinson, M. R., & Hawkins, C. P. (1998). Biodiversity of stream insects: variation at local, basin and regional scales. Annual Review of Entomology, 43, 271–293.CrossRefGoogle Scholar
  67. Whitehead, N. E., & Brooks, R. R. (1969). Aquatic bryophytes as indicators of uranium mineralization. Bryologist, 72, 501–507.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gretchen K. Bielmyer-Fraser
    • 1
  • Matthew Neal Waters
    • 2
  • Christina G. Duckworth
    • 3
  • Pratik P. Patel
    • 3
  • Benjamin Cole Webster
    • 3
  • Amber Blocker
    • 3
  • Cliff Hunter Crummey
    • 3
  • Aundrea Nicole Duncan
    • 3
  • Somuayiro Nadia Nwokike
    • 3
  • Codie Richard Picariello
    • 3
  • James T. Ragan
    • 3
  • Erika L. Schumacher
    • 3
  • Rebecca Lea Tucker
    • 3
  • Elizabeth Ann Tuttle
    • 3
  • Charlie Rufus Wiggins
    • 3
  1. 1.Jacksonville UniversityJacksonvilleUSA
  2. 2.Auburn UniversityAuburnUSA
  3. 3.Valdosta State UniversityValdostaUSA

Personalised recommendations