Skip to main content

Trophic state assessment of Bhindawas Lake, Haryana, India


Trophic state allows for identification of problems and pressures that an ecosystem faces as well as demarcation of remedial measures. This study focuses on spatial and temporal variations in the trophic state and detection of possible causes of its divergence in Bhindawas Lake, India. The trophic state of the lake undulated between eutrophic and hyper-eutrophic state throughout the study period. Higher phosphorus concentration within the lake ecosystem is the dominant causal factor for its eutrophic state. The influence of other water quality parameters has also been analyzed using Spearman’s coefficient of correlation. Deviations between trophic state index (TSI)-chlorophyll-a (Chl-a), TSI-total phosphorus (TP), and TSI-Secchi depth (SD) pointed out that the lake is principally phosphorus limited, and its trophic status is influenced by non-algal turbidity to a large extent. Spatial analysis of trophic levels in geographic information system (GIS) helped in identification of pollution sources and chemical attributes affecting the trophic state of the lake. This study provides a rationale for further investigation of nutrient and sediment loading into the lake system and development of sustainable management and conservation strategy identifying suitable measures ascertaining the ecosystem integrity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • Adakole, J.A. (2000). The effect of domestic, agricultural and industrial effluents on the water quality and biota of Bindare stream, Zaria, Nigeria. Ph.D. Thesis, Department of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria, 256 pp.

  • APHA (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA, AWWA, WEF.

    Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Creating continuous surfaces from point data. Principles of geographic information system. Oxford: Oxford University Press.

    Google Scholar 

  • Carlson, R. E. (1977). A trophic state index for lakes. American Society of Limnology and Oceanography , 22 (2), 361–369.Lawrence, Kan

  • Carlson, R.E. (1991). Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. Enhancing the States Lake Management Programs, 59–71.

  • Carlson, R. E., & Havens, K. E. (2005). Simple graphical methods for interpretation of relationships between trophic state variables. Lakes and Reservoirs: Research and Management, 21, 107–118.

    CAS  Article  Google Scholar 

  • Cunha, D. G. F., do Carmo Calijuri, M., & Lamparelli, M. C. (2013). A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering, 60, 126–134.

    Article  Google Scholar 

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J.,... & Thornbrugh, D. J. (2009). Eutrophication of US freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43(1), 12–19.

  • Edmondson, W. T. (1980). Secchi disk and chlorophyll. Limnology and Oceanography, 25, 378–379.

    CAS  Article  Google Scholar 

  • ESRI (2011). ArcGIS Desktop. Release 10. Redlands: Environmental Systems Research Institute.

  • Ganguli, U. (1975). A guide to the birds of the Delhi area. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • Gupta, R. C., Parasher, M., & Kaushik, T. K. (2011). An enquiry into the avian biodiversity of Bhindawas bird sanctuary in Jhajjar District in Haryana state in India. Journal of Experimental Zoology, 14(2), 457–465.

    Google Scholar 

  • Harper, H. H. (2010). Evaluation of surface water quality characteristics in Casselberry Lakes. Florida: Final Report, City of Casselberry Public Works Department.

    Google Scholar 

  • Harvey, B., Devasar, N., & Grewal, B. (2006). Atlas of birds of Delhi and Haryana. New Delhi: Rupa& Co.

    Google Scholar 

  • Havens, K. E. (1994). Seasonal and spatial variation in nutrient limitation in a shallow sub-tropical lake (Lake Okeechobee, Florida) as evidenced by trophic state index deviations. Archiv für Hydrobiologie, 131(1), 39–53.

    Google Scholar 

  • Havens, K. E. (1995). Secondary nitrogen limitation in a subtropical lake impacted by non-point source agricultural pollution. Environment Pollution., 89, 241–246.

    CAS  Article  Google Scholar 

  • Havens, K. E. (2000). Using trophic state index (TSI) values to draw inferences regarding phytoplankton limiting factors and seston composition from routine water quality monitoring data. Korean Journal of Limnology, 33(3), 187–196.

    Google Scholar 

  • Havens, K. E., & Walker Jr., W. W. (2002). Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). Lake and Reservoir Management, 18(3), 227–238.

    CAS  Article  Google Scholar 

  • Hoffman, E. E. (1988). Plankton dynamics on the outer southern US continental shelf 3. A coupled physical-biological model. Journal of Marine Research, 46, 919–946.

    Article  Google Scholar 

  • Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Joworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., & Zhu, Z.-l. (1996). Regional nitrogen budgets and riverine inputs of N and P for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 75–139.

    CAS  Article  Google Scholar 

  • Knoll, L. B., Hagenbuch, E. J., Stevens, M. H., Vanni, M. J., Renwick, W. H., Denlinger, J. C.,... & Gonzalez, M. J. (2015). Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables. Inland Waters, 5(3), 203–214.

  • Liu, X., Lu, X., & Chen, Y. (2011). The effects of temperature and nutrient ratios on Microcyctis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae, 10(3), 337–343.

    Article  Google Scholar 

  • Lo, C. P., & Yeung, A. K. W. (2000). Concepts and techniques of geographic information systems (2nd ed.). John Wiley and Sons.

  • Lo, C. P. & Yeung, A. K. W. (2002). Concepts and techniques of geographic information systems (pp. 350). Upper Saddle River: Prentice-Hall.

  • Meybeck, M., & Helmer, R. (1989). The quality of rivers: from pristine stage to global pollution. Paleogeography, Paleoclimatology, Paleoecology (Global and Planetary Change), 1, 283–309.

    Article  Google Scholar 

  • Ndungu, J., Augustijn, D. C. M., Hulscher, S. J. M. H., Kitaka, N., & Mathooko, J. (2013). Spatio-temporal variations in the trophic status of Lake Naivasha, Kenya. Lakes and Reservoirs: Research and Management, 18, 317–328.

    CAS  Article  Google Scholar 

  • Nibedita, K., & Krishna, G. B. (2009). Temporal, spatial and depth variation of nutrients and chlorophyll content in an urban wetland. Asian Journal of Water, Environment and Pollution, 2, 43–55.

    Google Scholar 

  • Niswander, S. F., & Mitsch, W. J. (1995). Functional analysis of a two year old created in stream wetland: hydrology, phosphorus retention and vegetation survival and growth. Wetlands, 15(3), 212–215.

    Article  Google Scholar 

  • OECD (1982). Eutrophication of waters: monitoring, assessment and control. Paris: Technical Report, Environmental Directorate, OECD 147pp.

    Google Scholar 

  • Prasannakumari, A. A., Ganagadevi, T., & Sukeshkumar, C. P. (2003). Surface water quality of river Neyyar-Thiruvananthapuram, Kerala, India. Pollution Research., 22(4), 515–525.

    CAS  Google Scholar 

  • Sawyer, C.N., Lackey, J.B., & Lenz, R.T. (1945). Report of the Governor’s Committee, Madison, Wis (Two volumes). An investigation of the odor nuisance occurring in the Madison Lakes-Monona, Waubesa and Kegonsa.

  • Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195, 260–262.

    CAS  Article  Google Scholar 

  • Schindler, D.W., Hacky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J,..., & Kasian, S.E.M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105(32), 11254–11258.

  • Scholten, M. C. T. H., Foekema, E. M., Van Dokkum, H. P., Kaag, N. H. B. M., & Jak, R. G. (2005). Eutrophication management and ecotoxicology (p. 122). Berlin: Springer.

    Book  Google Scholar 

  • Sheela, A. M., Letha, J., Joseph, S., Rmachandran, K. K., & Sanalkumar, S. P. (2011a). Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environmental Monitoring and Assessment, 177(1–40), 575–592.

    CAS  Article  Google Scholar 

  • Sheela, A. M., Letha, J., & Joseph, S. (2011b). Environmental status of a tropical lake system. Environmental Monitoring and Assessment., 180, 427–449.

    CAS  Article  Google Scholar 

  • Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends in Ecology & Evolution, 24(4), 201–207.

    Article  Google Scholar 

  • Upadhyay, R., Pandey, A. K., Upadhyay, S. K., Bassin, J. K., & Misra, S. M. (2012). Limnochemistry and nutrient dynamics in Upper Lake, Bhopal, India. Environmental Monitoring and Assessment, 184, 7.65–7077.

    Article  Google Scholar 

  • Vollenweider, R. A. (1970). Scientific fundamentals of the eutrophication of lakes and flowing water in particular reference to nitrogen and phosphorus as factors in eutrophication. Paris: OECD.

    Google Scholar 

  • Vollenweider, R. A., & Kerekes, J. (1982). Eutrophication of waters. Monitoring, assessment and control (p. 156). Paris: Organization for Economic Co-Operation and Development (OECD).

  • Wang, F., Wang, X., Zhao, Y., & Yang, Z. (2012). Long-term changes of water level associated with chlorophyll a concentration in Lake Baiyangdian, North China. Procedia Environmental Sciences, 13, 1227–1237.

    CAS  Article  Google Scholar 

  • Watson, S. B., McCauley, E., & Downing, J. A. (1997). Patterns in phytoplankton taxonomic composition across temperate lakes of different nutrient status. Limnology and Oceanography, 42(3), 487–495.

  • Wetzel, R. G. (1975). Limnology . Philadelphia: Saunders Company.743pp

    Google Scholar 

  • Wetzel, A. R. (2001). Limnology (Third ed.). USA: Academic.

    Google Scholar 

  • Xu, Y., Cai, Q., Han, X., Shao, M., & Liu, R. (2010). Factors regulating trophic status in a large subtropical reservoir, China. Environmental Monitoring and Assessment, 169, 237–248.

    CAS  Article  Google Scholar 

  • Ye, L., Han, X. Q., Xu, Y. Y., & Cai, Q. H. (2007). Spatial analysis for spring bloom and nutrient limitation in Xiangxi Bay of Three Gorges Reservoir. Environmental Monitoring and Assessment, 127(1–3), 135–145.

    CAS  Article  Google Scholar 

  • Yu, H., Xi, B., Jiang, J., Heaphy, M. J., Wang, H., & Li, D. (2011). Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake, China. Environmental Science and Pollution Research, 18(8), 1333–1342.

    CAS  Article  Google Scholar 

Download references


First author thankfully acknowledges INSPIRE Division, Department of Science and Technology, Ministry of Science and Technology, and Govt. of India for INSPIRE Fellowship. The authors also express gratitude to Dr. Amrinder Kaur, Additional PCCF cum Chief Wildlife Warden, Haryana Forest Department; and Mr. Jai Bhagwan, wildlife inspector, and field staff at Bhindawas Lake for cooperation and necessary support during sampling.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. K. Garg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saluja, R., Garg, J.K. Trophic state assessment of Bhindawas Lake, Haryana, India. Environ Monit Assess 189, 32 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Trophic state index
  • Chlorophyll
  • Secchi depth
  • Total phosphorus
  • Spatial interpolation