Skip to main content
Log in

Multiple geophysical surveys for old landfill monitoring in Singapore

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

One-dimensional boring presents limitations on mapping the refuse profile in old landfills owning to waste heterogeneity. Electrical imaging (EI) and multiple-analysis of surface wave (MASW) were hereby deployed at an old dumping ground in Singapore to explore the subsurface in relation to geotechnical analysis. MASW estimated the refuse boundary with a higher precision as compared to EI, due to its endurance for moisture variation. EI and MASW transection profiles suggested spots of interest, e.g., refuse pockets and leachate mounds. 3D inversion of EI and MASW data further illustrated the transformation dynamics derived by natural attenuation, for instance the preferential infiltration pathway. Comparison of geophysical surveys at different years uncovered the subterranean landfill conditions, indicating strong impacts induced by aging, precipitation, and settlement. This study may shed light on a characterization framework of old landfills via combined geophysical models, thriving landfill knowledge with a higher creditability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ASTM (2011). Standard guide for selecting surface geophysical methods. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Balia, R., & Littarru, B. (2010). Geophysical experiments for the pre-reclamation assessment of industrial and municipal waste landfills. Journal of Geophysics and Engineering, 7(1), 64.

    Article  Google Scholar 

  • Bentley, L. R., & Gharibi, M. (2004). Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics, 69(3), 674–680. doi:10.1190/1.1759453.

    Article  Google Scholar 

  • British Standards Institution (1999). Code of Practice for Site Investigations: BS 5930: 1999: British Standards Institute.

  • Brunet, P., Clément, R., & Bouvier, C. (2010). Monitoring soil water content and deficit using electrical resistivity tomography (ERT)—a case study in the Cevennes area, France. Journal of Hydrology, 380(1–2), 146–153. doi:10.1016/j.jhydrol.2009.10.032.

    Article  Google Scholar 

  • Cardarelli, E., & Di Filippo, G. (2004). Integrated geophysical surveys on waste dumps: evaluation of physical parameters to characterize an urban waste dump (four case studies in Italy). Waste Management & Research, 22(5), 390–402. doi:10.1177/0734242x04046042.

    Article  Google Scholar 

  • Chakma, S., & Mathur, S. (2012). Estimation of primary and mechanical compression in MSW landfills. Journal of Hazardous, Toxic, and Radioactive Waste, 16(4), 298–303. doi:10.1061/(ASCE)HZ.2153-5515.0000117.

    Article  Google Scholar 

  • Chambers, J., Ogilvy, R., Kuras, O., Cripps, J., & Meldrum, P. (2002). 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology, 41(6), 690–704. doi:10.1007/s00254-001-0452-4.

    Article  Google Scholar 

  • Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71(6), B231–B239. doi:10.1190/1.2360184.

    Article  Google Scholar 

  • Coggon, J. H. (1971). Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1), 132–155. doi:10.1190/1.1440151.

    Article  Google Scholar 

  • Das, K. C., Smith, M. C., Gattie, D. K., & Hale Boothe, D. D. (2002). Stability and quality of municipal solid waste compost from a landfill aerobic bioreduction process. Advances in Environmental Research, 6(4), 401–409. doi:10.1016/S1093-0191(01)00066-1.

    Article  CAS  Google Scholar 

  • Dumont, G., Pilawski, T., Dzaomuho-Lenieregue, P., Hiligsmann, S., Delvigne, F., Thonart, P., et al. (2016). Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill. Waste Management, 55, 129–140. doi:10.1016/j.wasman.2016.02.013.

    Article  Google Scholar 

  • Fei, X., & Zekkos, D. (2013). Factors influencing long-term settlement of municipal solid waste in laboratory bioreactor landfill simulators. Journal of Hazardous, Toxic, and Radioactive Waste, 17(4), 259–271. doi:10.1061/(ASCE)HZ.2153-5515.0000167.

    Article  CAS  Google Scholar 

  • Frempong, E., & Yanful, E. (2008). Interactions between three tropical soils and municipal solid waste landfill leachate. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 379–396.

    Article  CAS  Google Scholar 

  • Grellier, S., Reddy, K., Gangathulasi, J., Adib, R., & Peters, C. (2007). Correlation between electrical resistivity and moisture content of municipal solid waste in bioreactor landfill. In Geoenvironmental Engineering (pp. 1–14).

  • Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements. Géotechnique, 49, 387–403.

    Article  Google Scholar 

  • Hebeler, G. L. (2001). Site characterization in Shelby County, Tennessee using advanced surface wave methods: school of civil and environmental engineering, Georgia institute of technology, 2001. Directed by Glenn J. Rix.

  • Holcombe, H. T., & Jiracek, G. R. (1984). Three-dimensional terrain corrections in resistivity surveys. Geophysics, 49(4), 439–452. doi:10.1190/1.1441679.

    Article  Google Scholar 

  • Imai, T., & Yoshimura, Y. (1982). Correlation of N-value with S-wave velocity and shear modulus. In The 2nd European Symposium of Penetration Testing, Amsterdam (pp. 57–72).

  • Kavazanjian, E., Matasovic, N., Stokoe, K. H., & Bray, J. D. (1996). In situ shear wave velocity of solid waste from surface wave measurements. In Second International Congress on Environmental Geotechnics, Osaka, Japan (vol. Proceedings 1, pp. 97–102).

  • Kibria, G., & Hossain, M. S. (2015). Investigation of degree of saturation in landfill liners using electrical resistivity imaging. Waste Management, 39, 197–204. doi:10.1016/j.wasman.2015.02.015.

    Article  CAS  Google Scholar 

  • Konstantaki, L. A. (2016). Imaging and characterization of heterogeneous landfills using geophysical methods.

  • Loke, M. H., & Barker, R. D. (1996). Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 44(3), 499–523.

    Article  Google Scholar 

  • Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & do Nascimento, J. C. (2010). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. doi:10.1016/j.wasman.2010.07.019.

    Article  Google Scholar 

  • Meju, M. A. (2000). Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. Journal of Applied Geophysics, 44(2–3), 115–150. doi:10.1016/S0926-9851(00)00011-2.

    Article  Google Scholar 

  • Montgomery Watson (1997). Consultancy services for the rehabilitation of Tampines dumping ground: site investigation and alternatives analysis. Final report (Vol. 1). Singapore: Montgomery Watson Pte Ltd.

    Google Scholar 

  • Mota, R., Monteiro Santos, F. A., Mateus, A., Marques, F. O., Gonçalves, M. A., Figueiras, J., et al. (2004). Granite fracturing and incipient pollution beneath a recent landfill facility as detected by geoelectrical surveys. Journal of Applied Geophysics, 57(1), 11–22. doi:10.1016/j.jappgeo.2004.08.007.

    Article  Google Scholar 

  • New Jersey Department of Environmental Protection (NJDEP) (2005). Field Sampling Procedures Manual. Trenton, NJ: NJDEP.

  • Peace, J. L., Hyndman, D. A., & Goering, T. J. (1996). Application of non-intrusive geophysical techniques at the mixed waste landfill, technical area 3, Sandia National Laboratories. New Mexico: Sandia National Laboratories.

    Book  Google Scholar 

  • Pridmore, D. F., Hohmann, G. W., Ward, S. H., & Sill, W. R. (1981). An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(7), 1009–1024. doi:10.1190/1.1441239.

    Article  Google Scholar 

  • Rattanaoudom, R. (2005). Investigation on toxicity and hazardous nature of a municipal solid waste dumpsite. Thailand: Asian Institute of Technology.

    Google Scholar 

  • Reynolds, J. M., & Taylor, D. I. (1996). Use of geophysical surveys during the planning, construction and remediation of landfills (vol. 11, Engineering geology of waste disposal). London: The Geological Society of London.

    Google Scholar 

  • Rosqvist, H., & Destouni, G. (2000). Solute transport through preferential pathways in municipal solid waste. Journal of Contaminant Hydrology, 46(1–2), 39–60. doi:10.1016/S0169-7722(00)00127-3.

    Article  CAS  Google Scholar 

  • Samouëlian, A., Richard, G., Cousin, I., Guérin, R., Bruand, A., & Tabbagh, A. (2004). Three-dimensional crack monitoring by electrical resistivity measurement. European Journal of Soil Science, 55(4), 751–762. doi:10.1111/j.1365-2389.2004.00632.x.

    Article  Google Scholar 

  • Sandberg, S. K., Slater, L. D., & Versteeg, R. (2002). An integrated geophysical investigation of the hydrogeology of an anisotropic unconfined aquifer. Journal of Hydrology, 267(3–4), 227–243. doi:10.1016/S0022-1694(02)00153-1.

    Article  Google Scholar 

  • Simões, G. F., & Catapreta, C. A. A. (2013). Monitoring and modeling of long-term settlements of an experimental landfill in Brazil. Waste Management, 33(2), 420–430. doi:10.1016/j.wasman.2012.10.001.

    Article  Google Scholar 

  • Soupios, P., Papadopoulos, N., Papadopoulos, I., Kouli, M., Vallianatos, F., Sarris, A., et al. (2007). Application of integrated methods in mapping waste disposal areas. Environmental Geology, 53(3), 661–675. doi:10.1007/s00254-007-0681-2.

    Article  Google Scholar 

  • Svensson, M., Bernstone, C., & Dahlin, T. (1999). The combination of the SASW method and DC-resistivity in characterization of old landfills. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1999 (pp. 123–131).

  • Tame, C., Cundy, A. B., Royse, K. R., Smith, M., & Moles, N. R. (2013). Three-dimensional geological modelling of anthropogenic deposits at small urban sites: a case study from Sheepcote Valley, Brighton, UK. Journal of Environmental Management, 129, 628–634. doi:10.1016/j.jenvman.2013.08.030.

    Article  CAS  Google Scholar 

  • Wall, D., & Zeiss, C. (1995). Municipal landfill biodegradation and settlement. Journal of Environmental Engineering, 121(3), 214–224. doi:10.1061/(ASCE)0733-9372(1995)121:3(214).

    Article  CAS  Google Scholar 

  • Wightman, W. E., Jalinoos, F., Sirles, P., & Hanna, K. (2003). Application of geophysical methods to highway related problems. Lakewood, CO: Federal Highway Administration.

    Google Scholar 

  • Wu, B.-J., Zhu, Z.-D., & Gu, Z.-J. (2013). Study on accuracy of soil slope stability analysis based on strength reduction FEM. Journal of Water Resources and Architectural Engineering, 11(1), 17–21.

    Google Scholar 

  • Yin, K., Tong, H. H., Noh, O., Wang, J.-Y., & Giannis, A. (2015). Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring. Bulletin of Environmental Contamination and Toxicology, 94(3), 275–281. doi:10.1007/s00128-014-1427-y.

    Article  CAS  Google Scholar 

  • Zekkos, D., Sahadewa, A., Woods, R. D., & Stokoe II, K. H. (2014). Development of model for shear-wave velocity of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 140(3), 04013030. doi:10.1061/(ASCE)GT.1943-5606.0001017.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Research Foundation of Singapore (NRF-CRP5-2009-2) for Residues and Resource Reclamation Centre, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yin.

Electronic supplementary material

Figure S1

(DOC 454 kb)

Figure S2

(DOC 39 kb)

Figure S3

(DOC 37 kb)

Table S1

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Tong, H., Giannis, A. et al. Multiple geophysical surveys for old landfill monitoring in Singapore. Environ Monit Assess 189, 20 (2017). https://doi.org/10.1007/s10661-016-5722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5722-4

Keywords

Navigation