Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae)

  • Álvaro Rodríguez-González
  • Sara Mayo
  • Óscar González-López
  • Bonifacio Reinoso
  • Santiago Gutierrez
  • Pedro Antonio Casquero


Xylotrechus arvicola is an important pest in vineyards (Vitis vinifera) in the main Iberian wine-producing regions, and Acanthoscelides obtectus causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions with a spray tower, the susceptibility of the immature stages of X. arvicola and A. obtectus against the entomopathogenic fungi Beauveria bassiana and four strains of Trichoderma spp. was evaluated. Both insect pests T. harzianum and B. bassiana showed a good inhibitory activity, accumulating an inhibition on the eggs of values above 85 and 82%, respectively. T. atroviride and T. citrinoviride had a lower inhibitory activity, with inhibition values of 74.1 and 73.3% respectively. These fungi can be considered a highly effective tool for the control during the immature stages of these species.


Inhibitory activity Immature stages Beauveria bassiana Trichoderma spp. Potter tower 



The grant awarded to Sara Mayo Prieto (FPU12/00677) by the Ministry of Education, Culture and Sport (Spain) according to the resolution of April 25, 2012 (BOE of 10 May), as amended by resolution of May 18, 2012 (BOE of 22 May), and by resolution of October 31, 2012 (BOE of 12 November), and granted in the resolution of December 20, 2012. We thank Junta de Castilla y León, Consejería de Educación for the project “Effect of terpenes and physiologically related compounds produced by Trichoderma parareesei in the development of common bean (Phaseolus vulgaris L.) and in defensive responses of this plant” (LE228U14) and to Dr. María Piedad Campelo, for her availability to provide us their mycological collection.


  1. Abdul-Wahid, O. A., & Elbanna, S. M. (2012). Evaluation of the insecticidal activity of Fusarium solani and Trichoderma harzianum against cockroaches; Periplaneta americana. African Journal of Microbiology Research, 6(5), 1024–1032.Google Scholar
  2. Alahmadi, S., Ouf, A., Ibrahim, A., & El-Shaikh, A. (2012). Possible control of data palm stag beetle, Lucanus cervus (L.) (Coleoptera: Lucanidae), using gut protease inhibitors of different biocontrol agents. Egyptian Society for Biological Control of Pests, 22(2), 93–101.Google Scholar
  3. Baier, A. H., & Webster, B. D. (1992). Control of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. seed stored on small farms. Evaluation of damage. Journal of Stored Products Research, 28, 289–293.CrossRefGoogle Scholar
  4. Campelo, M. P. (2010). Estudio de la microbiotica patógena presente en semillas de “Alubia de León” (Phaseolus vulgaris L.) y los métodos de control. PhD Thesis. University of León.Google Scholar
  5. Daglish, G. J. (2008). Impact of resistance on the efficacy of binary combinations of spinosad, chlorpyrifos-methyl and s-methoprene against five stored-grain beetles. Journal of Stored Products Research, 44, 71–76.CrossRefGoogle Scholar
  6. Daglish, G. J., Hall, E. A., Zorzetto, M. J., Lambkin, T. M., & Erbacher, J. M. (1993). Evaluation of protectants for control of Acanthoscelides obtectus (say) (Coleoptera: Bruchidae) in navy beans (Phaseolus vulgaris (L.)). Journal of Stored Products Research, 29, 215–219.CrossRefGoogle Scholar
  7. Dunkel, F. V., & Jaronski, S. T. (2003). Development of a bioassay system for the predator, Xylocoris flavipes (Heteroptera: Anthocoridae), and its use in subchronic toxicity/pathogenicity studies of Beauveria bassiana strain GHA. Journal of Economic Entomology, 96, 1045–1053.CrossRefGoogle Scholar
  8. García-Benavides, P., Martin-Zamorano, P., Ocete-Pérez, C. A., Maistrello, L., & Ocete, R. (2013). Biodiversity of pathogenic wood fungi isolated. Journal International des Sciences de la Vigne et du Vin, 47(2), 73–81.Google Scholar
  9. García-Ruiz, E. (2009). Contribución al Manejo de Plagas en vid: Xylotrechus arvicola y Lobesia botrana Denis & Schiffermüller (Lepidoptera: Tortricidae). PhD Thesis. University of La Rioja.Google Scholar
  10. García-Ruiz, E., Marco, V., & Pérez-Moreno, I. (2007). Xylotrechus arvicola: Posibilidades de control biológico. Terralia, 61, 38–44.Google Scholar
  11. Ghosh, S. K., & Pal, S. (2016). Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malation against the insect pest Leucinodes orbonalis. Environmental Monitoring Assessment, 188, 37–44. doi: 10.1007/s10661-015-5053-x.CrossRefGoogle Scholar
  12. Gołebiowski, M., Malinski, E., Nawrot, J., & Stepnowski, P. (2008). Identification and characterization of surface lipid components of the dried-bean beetle Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Journal of Stored Products Research, 44, 386–388.CrossRefGoogle Scholar
  13. Hajek, A. (2004) Natural enemies: an introduction to biological control. Cambrige University Press, UK.Google Scholar
  14. Liu, H., & Bauer, L. S. (2006). Susceptibility of Agrilus planipennis (Coleoptera: Buprestidae) to Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology, 99, 1096–1103.CrossRefGoogle Scholar
  15. Maehara, N., & Kanzaki, N. (2013). Effect of aging in adult Monochamus alternatus (Coleoptera: Cerambycidae) on the susceptibility of the beetle to Beauveria bassiana (Ascomycota: Hypocreales). Journal of Forest Research, 19(3), 357–360.CrossRefGoogle Scholar
  16. Mayo, S., Gutiérrez, S., Gómez-Malmierca, M., Lorenzana, A., Campelo, M. P., Hermosa, R., & Casquero, P. A. (2015). Influence of Rhizoctoniasolani and Trichoderma spp. in growth of bean (Phaseolusvulgaris L.) and in the induction of plant defense-related genes. Frontiers in Plant Science, 6, 685–696.CrossRefGoogle Scholar
  17. Meyers, J. M., Stephen, F. M., Haavik, L. J., & Steinkraus, D. C. (2013). Laboratory and field bioassays on the effects of Beauveria bassiana Vuillemin (Hypocreales: Cordycipitaceae) on red oak borer, Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae). Biological Control, 65, 258–264.CrossRefGoogle Scholar
  18. Ocete, R., López-Martínez, M. A., Prendes, C., Lorenzo, C. D., & González-Andújar, J. L. (2002). Relación entre la infestación de Xylotrechus arvicola (Coleoptera: Cerambycidae) (Olivier) y la presencia de hongos patógenos en un viñedo de la Denominación de Origen “La Mancha”. Boletin Sanidad Vegetal Plagas, 28, 97–102.Google Scholar
  19. Paul, U. V., Lossini, J. S., Edwards, P. J., & Hilbeck, A. (2009). Effectiveness of products fromfour locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. Journal of Stored Products Research, 45, 97–107.CrossRefGoogle Scholar
  20. Peláez, H., Hernández, J. M., Martín, M. C., Moreno, C. M., & Santiago, Y. (2002). Determinación de las características del huevo de Xylotrechus arvicola (Coleoptera: Cerambycidae, Olivier, 1795) (p. 52). Ilha Terceira, Azores: Libro de Actas del X Congreso Ibérico de Entomología.Google Scholar
  21. Peláez, H., Moreno, C., Santiago, Y., Maraña, R., Urbez, J. R., Lambert, S. M., María, C. M., Evan, E., Barrigón, J., & Prada, P. V. (2006). Xylotrechus arvicola: Un cerambícido en el cultivo de la vid. Terralia, 55, 50–60.Google Scholar
  22. Potter, C. (1952). An improved laboratory apparatus for applying direct sprays and surface films with data on the electrostatic charge on atomized spray fluids. Annals of Applied Biology, 1, 1–29.CrossRefGoogle Scholar
  23. Razinger, J., Lutz, M., Schroers, H. J., Urek, G., & Grunder, J. (2014). Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. Journal of Economic Entomology, 107(4), 1348–1354.CrossRefGoogle Scholar
  24. Regnault-Roger, C., Vincent, C., & Arnason, J. T. (2012). Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology, 57, 405–424.CrossRefGoogle Scholar
  25. Ren, S., Islam, M. T., & Castle, S. J. (2009). Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata, 134, 28–34.Google Scholar
  26. Rodríguez-González, A. (2014). Improvement in control strategies os cerambycids in vine growing. PhD Thesis. University of León.Google Scholar
  27. Rodríguez-González, A., Peláez, H. J., Mayo, S., González-López, O., & Casquero, P. A. (2016c). Egg development and toxicity of insecticides to eggs, neonate larvae and adults of Xylotrechus arvicola, a pest in Iberian grapevines. Vitis, 55, 83–93.Google Scholar
  28. Vilca-Mallqui, K. S., Oliveira, E. E., & Guedes, R. N. C. (2013). Competition between the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus in common beans. Journal of Stored Products Research, 55, 32–35.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Engineering and Agricultural Sciences, Environment Institute Natural Resources and BiodiversityUniversity of LeonLeonSpain
  2. 2.Area of Microbiology, University School of Agricultural EngineersUniversity of LeonPonferradaSpain

Personalised recommendations