Skip to main content

Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India

Abstract

Wetlands accounts for 6% area of the Earth’s land cover and nearly 17% of the Hindu Kush Himalayan region. They are of utmost importance to climate dynamics and are critical links between terrestrial and aquatic ecosystems. Despite the need of high attention towards conserving and managing wetland resources, mapping them is a least practiced activity. This study shows the temporal change in land use and land cover pattern of Tso Moriri Lake, the highest altitude lake in India and designated as Ramsar site in year 2002, using multi-sensor and multi-date imagery. Due to change in hydro-meteorological conditions of the region, this lake area has been reduced. Since the lake recharge is dependent on snowmelt, hence change in climatic conditions (less snowfall in winters), to a certain extent, is also responsible for the decrease in water level and water spread of the lake. The result shows that the lake area has reduced approximately 2 km2 in the last 15 years, and also, agriculture, grasslands, and vegetation cover have increased to a significant extent. Agricultural land and grasslands have doubled while the vegetation cover has increased more than six times, showing the coupled effect of climate change and anthropogenic activities. Trend of temperature and precipitation corroborates the effects of climate change in this region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ambinakudige, S., & Joshi, K. (2012). Remote sensing of cryosphere. In Remote Sensing—Applications. InTech. doi:10.5772/35194.

    Google Scholar 

  2. Anup, K. C., & Ghimire, A. (2015). High-altitude plants in era of climate change: a case of Nepal Himalayas. In Climate change impacts on high-altitude ecosystems (pp. 177–187). Cham: Springer International Publishing. doi:10.1007/978-3-319-12859-7_6.

    Google Scholar 

  3. Bassi, N., Kumar, M. D., Sharma, A., & Pardha-Saradhi, P. (2014). Status of wetlands in India: a review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1–19. doi:10.1016/j.ejrh.2014.07.001.

    Google Scholar 

  4. Betbeder, J., Gond, V., Frappart, F., Baghdadi, N. N., Briant, G., & Bartholome, E. (2014). Mapping of Central Africa forested wetlands using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 531–542. doi:10.1109/JSTARS.2013.226973.

    Article  Google Scholar 

  5. Census of India (2001), Office of the Registrar General & Census Commissioner, India. Retrieved September 28, 2016, from http://www.censusindia.gov.in/

  6. Census of India (2011). Office of the Registrar General & Census Commissioner, India. Retrieved September 28, 2016, from http://www.censusindia.gov.in/

  7. Chandan, P., Chatterjee, A., & Gautam, P. (2007). Management planning of Himalayan high altitude wetlands. A case study of Tsomoriri and Tsokar Wetlands in Ladakh, India. In Proceedings of Taal2007: The 12th World Lake Conference (Vol. 1446, p. 1452)

  8. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113. doi:10.1016/j.rse.2009.01.007.

  9. Chatterjee, A., Blom, E., Gujja, B., Jacimovic, R., Beevers, L., O’Keeffe, J., et al. (2010). WWF initiatives to study the impact of climate change on Himalayan high-altitude wetlands (HAWs). Mountain Research and Development, 30(1), 42–52. doi:10.1659/MRD-JOURNAL-D-09-00091.1.

    Article  Google Scholar 

  10. Frazier, S. (1999). Ramsar sites overview: a synopsis of the world’s wetlands of international importance. Wetlands International.

  11. Hassan ul, Z., Shah, J. A., Kanth, T. T., & Pandit, A. K. (2015). Influence of land use/land cover on the water chemistry of Wular Lake in Kashmir Himalaya (India). Ecological Processes, 4(1), 9. doi:10.1186/s13717-015-0035-z.

    Article  Google Scholar 

  12. How do Landsat 8 band combinations differ from Landsat 7 or Landsat 5 satellite data? http://landsat.usgs.gov/L8_band_combos.php (accessed on 24/01/2015)

  13. India Water Portal, http://www.indiawaterportal.org/met_data/, (accessed on 30/09/2016)

  14. Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11(3–4), 185–200. doi:10.1016/S0167-5877(05)80004-2.

    Article  Google Scholar 

  15. Ji, L., Jiang, K., Geng, X., Tang, H., Yu, K., & Zhao, Y. (2011). Improving wetland mapping by using multi-source data sets. In 2011 International Symposium on Image and Data Fusion (pp. 1–4). IEEE. doi:10.1109/ISIDF.2011.6024285

  16. Klemas, V. (2011). Remote sensing of wetlands: case studies comparing practical techniques. Journal of Coastal Research, 27, 418–427. doi:10.2112/JCOASTRES-D-10-00174.1.

    Article  Google Scholar 

  17. Kristine Butera, M. (1983). Remote sensing of wetlands. IEEE Transactions on Geoscience and Remote Sensing, GE-21(3), 383–392. doi:10.1109/TGRS.1983.350471.

    Article  Google Scholar 

  18. Laben, Craig A., and Bernard V. Brower. “Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening.” U.S. Patent No. 6,011,875. 4 Jan. 2000

  19. Landsat, National Aeronautics and Space Administration (L7). Science data users handbook. 2011-03-11]. http://landsathandbook.gsfc.nasa.gov/inst_cal/prog_sect8_2.html

  20. Landsat, United State Geological Survey (L8). Data users handbook version 2.0. 2016-03-29]. http://landsat.gsfc.nasa.gov/?page_id=4071

  21. Lesher, R. S. (2011). Climate change impacts to a high altitude lake in the Indian Himalaya (Doctoral dissertation, San Diego State University)

  22. Mabwoga, S., Thukral, A., Almutairi, A., Warner, T., Baker, C., Lawrence, R., et al. (2014). Characterization of change in the Harike wetland, a Ramsar site in India, using landsat satellite data. SpringerPlus, 3(1), 576. doi:10.1186/2193-1801-3-576.

    Article  Google Scholar 

  23. Mishra, P. K., Anoop, A., Jehangir, A., Prasad, S., Menzel, P., Schettler, G., et al. (2014). Limnology and modern sedimentation patterns in high altitude Tso Moriri Lake, NW Himalaya—implications for proxy development. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 185(3), 329–348. doi:10.1127/fal/2014/0664.

    Article  Google Scholar 

  24. Mishra, P. K., Anoop, A., Schettler, G., Prasad, S., Jehangir, A., Menzel, P., et al. (2015). Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quaternary International, 371, 76–86. doi:10.1016/j.quaint.2014.11.040.

    Article  Google Scholar 

  25. Mushtaq, F., & Pandey, A. C. (2014). Assessment of land use/land cover dynamics vis-à-vis hydrometeorological variability in Wular Lake environs Kashmir Valley, India using multitemporal satellite data. Arabian Journal of Geosciences, 7(11), 4707–4715. doi:10.1007/s12517-013-1092-1.

    Article  Google Scholar 

  26. National Wetland Atlas: Jammu and Kashmir, SAC/RESA/AFEG/NWIA/ATLAS/16/2010, Space Applications Centre, ISRO, Ahmedabad, India, 176p, 2011.

  27. Negi, G. C. S., Samal, P. K., Kuniyal, J. C., Kothyari, B. P., Sharma, R. K., & Dhyani, P. P. (2012). Impact of climate change on the western Himalayan mountain ecosystems: an overview. Tropical Ecology, 53(3), 345–356.

    Google Scholar 

  28. Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5), 381–402. doi:10.1023/A:1020908432489.

    Article  Google Scholar 

  29. Philip, G., & Mazari, R. K. (2000). Shrinking lake basins in the proximity of the Indus Suture Zone of northwestern Himalaya: a case study of Tso Kar and Startsapuk Tso, using 1RS-1C data. International Journal of Remote Sensing, 21(16), 2973–2984. doi:10.1080/01431160050144901.

    Article  Google Scholar 

  30. Ramsar Convention Secretariat 2013. The Ramsar convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971), 6th ed Ramsar Convention Secretariat, Gland, Switzerland

  31. Ramsar List. The list of wetlands of international importance, published 25 June 2015. http://www.ramsar.org/sites/default/files/documents/library/sitelist.pdf

  32. Rebelo, L. M., Finlayson, C. M., & Nagabhatla, N. (2009). Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management, 90(7), 2144–2153. doi:10.1016/j.jenvman.2007.06.027.

    Article  Google Scholar 

  33. Richards, J. A. (1999). Remote sensing digital image analysis (Vol. 3). Berlin et al.: Springer, doi: 10.1007/3-540-29711-1_8.

  34. Romshoo, S. A., & Rashid, I. (2014). Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal of Geosciences, 7(1), 143–160. doi:10.1007/s12517-012-0761-9.

    Article  Google Scholar 

  35. Shukla, D. P., Dubey, C. S., & Singh, N. (2012). Neotectonic activity and the origin of Tso Morari Lake using remote sensing and digital elevation model (DEM) derivative techniques. Geocarto International, 27(3), 249–262. doi:10.1080/10106049.2011.642412.

    Article  Google Scholar 

  36. Tana, G., Letu, H., Cheng, Z., & Tateishi, R. (2013). Wetlands mapping in North America by decision rule classification using MODIS and ancillary data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(6), 2391–2401. doi:10.1109/JSTARS.2013.2249499.

    Article  Google Scholar 

  37. Tso Moriri Lake, http://www.rainwaterharvesting.org/tso_moririlake/tso_moririlake.htm (accessed on 04/10/2016)

  38. Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., et al. (2008). Free access to Landsat imagery. Science, 320(5879).

Download references

Acknowledgements

The authors would like to thank India Water Portal, Indian Meteorological Department and United States Geological Survey for providing the data to carry out this study. We express sincere and deep sense of gratitude towards the two anonymous reviewers for their comments on this paper. Without their critical but constructive comments, this paper would not have come out in this shape.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sharad Kumar Gupta or Dericks Praise Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 675 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Shukla, D.P. Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India. Environ Monit Assess 188, 700 (2016). https://doi.org/10.1007/s10661-016-5707-3

Download citation

Keywords

  • Tso Moriri Lake
  • Ramsar wetland
  • Land use/land cover (LULC)
  • Change detection
  • Remote sensing