Skip to main content

Advertisement

Log in

Dimensional changes in the Kolahoi glacier from 1857 to 2014

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study assimilates data from historical records (1857–1961/84), survey of India topographic maps, and a series of multispectral satellite data (1962–2014) for analyzing the shrinkage and dimensional changes of the Kolahoi glacier, Jammu and Kashmir, between 1857 and 2014. The composite results show that the glacier has receded by ∼3423 m (21.8 m/year) in the past 157 years. The historical records reveal that the glacier retreated by >1609 m from 1857 to 1909, 800 m from 1912 to 1961, and 210 m from 1961 to 1984. From 1962 to 2014 (52 years), we observed a retreat of 1014 ± 64 m (19.5 ± 1.1 m/year). We noted a marked disparity in the retreat rates of primary snout (PS) and secondary snout (SS) which was found to be 19.5 ± 1.1 m/year for PS and 11.34 ± 1.1 m/year for SS. Further, our investigations reveal that the changes in the length are accompanied by considerable changes in the area. The area of the glacier reduced from 14.46 ± 0.34 km2 (1962) to 11.28 ± 0.21 km2 (2014) amounting an overall deglaciation of 3.18 ± 0.34 km2 or 22.99 ± 2.3% in the past 52 years. Besides, the glacier has started degenerating at a much accelerated pace showing a deglaciation of 11.1 ± 1.9% and a recession rate of ~27.8 ± 3.2 m/year in just 14 years (2000–2014). These results warrant the detailed studies regarding various controlling factors, besides the climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ageta, Y., Naito, N., Nakawo, Y., Fujita, K., Shankar, K., Pokhrel, A. P., & Wangda, D. (2001). Study project on the recent rapid shrinkage of summer accumulation type glaciers in the Himalayas, 1997–1999. Bulletin of Glaciological Research, 18, 45–49.

    Google Scholar 

  • Ahmad, N., & Hashimi, N. H. (1974). Glacial history of Kolahoi Glacier, India. International Journal of Glaciology, 13(68), 279–283.

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28(2), 437–442.

    Article  Google Scholar 

  • Bajracharya, S. R., & Mool, P. (2009). Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Annals of Glaciology, 50(53), 81–86.

    Article  Google Scholar 

  • Bajracharya, S.R., Mool, P.K., & Shrestha, B.R. (2007). Impact of climate change on himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. Kathmandu: International Centre for Integrated Mountain Development (ICIMOD) Publication, 119.

  • Beedle, M. J., Dyurgerov, M., Tangborn, W., Khalsa, S. J. S., Helm, C., Raup, B., Armstrong, R., & Barry, R. G. (2008). Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska. The Cryosphere, 2, 33–51.

    Article  Google Scholar 

  • Berthier, E., Arnaund, Y., Kumar, R., Sarfaraz, A., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Journal of Remote Sensing of the Environment, 108, 327–338.

    Article  Google Scholar 

  • Bhambri, R., & Bolch, T. (2009). Glacier mapping: a review with special reference to the Indian Himalayas. Progress in Physical Geography, 33(5), 672–704.

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2011). Mapping of debris covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. International Journal of Remote Sensing, 32, 8095–8119.

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2012). Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Current Science, 102, 489–494.

    Google Scholar 

  • Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D. P., Srivastava, D., & Pratap, B. (2013). Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. The Cryosphere, 7, 1385–1398.

    Article  Google Scholar 

  • Bhutiyani, M. R., Vishwas, S. K., & Pawar, N. J. (2007). Longterm trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climate Change, 85, 159–177.

    Article  Google Scholar 

  • Bolch, T., & Kamp, U. (2005). Glacier mapping in high mountains using DEMs, Landsat and ASTER data. In: Proceedings of the 8th International Symposium on High Mountain Remote Sensing Cartography, 20–27.

  • Bolch, T., Buchroithner, M., Pieczonka, T., & Kunert, A. (2008). Planimetric and volumetric glacier changes in the Khumbu, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology, 54, 592–600.

    Article  Google Scholar 

  • Bolch, T., Menounos, B., & Wheate, R. D. (2010). Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of Environment, 114, 127–137.

    Article  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336, 310–314.

    Article  CAS  Google Scholar 

  • Brock, B.W., Mihalcea, C., Kirkbride, M.P., Diolaiuti, G., Cutler, M.E.J., & Smiraglia, C. (2010). Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. Journal of Geophysical Research, 115 (D9).

  • Burns, P., & Nolin, A. (2014). Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 140, 165–178.

    Article  Google Scholar 

  • Cetin, M. (2015). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 640–650. doi:10.1007/s10661-015-4861-3.

  • Cetin, M. (2016). Sustainability of urban coastal area management: A case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541.

  • Chaujar, R. K. (2009). Climate change and its impact on the Himalayan glaciers—a case study on the Chorabari glacier, Garhwal Himalaya, India. Current Science, 96, 703–707.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Copland, L., Sylvestre, T., Bishop, M., Shroder, J., Seong, Y., Owen, L., Bush, A., & Kamp, U. (2011). Expanded and recently increased glacier surging in the Karakoram. Arctic and Antarctic Alpine Research, 43, 503–516.

    Article  Google Scholar 

  • Cotter, G. ,d., P., & Brown, J. (1907). Notes on certain glaciers in Kumaun. Rec. Geological Survey of India, 35(4), 148–152.

    Google Scholar 

  • Dar, R. A., Rashid, I., Romshoo, S. A., & Marazi, A. (2014). Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environment Monitoring and Assessment, 186, 2549–2562.

    Article  CAS  Google Scholar 

  • Dimri, A. P., & Mohanty, U. C. (2007). Location specific prediction of maximum and minimum temperature over the Western Himalayas. Meteorological Applications, 14, 79–93.

    Article  Google Scholar 

  • Dobhal, D. P., & Mehta, M. (2010). Surface morphology elevation changes and terminus retreat of Dokriani glacier, Garhwal Himalaya: implication of climate change. Himalayan Geology, 31, 71–78.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2004). Recession and morphometrical change of Dokriani Glacier (1962–1995), Garhwal Himalaya, India. Current Science, 86(5), 692–696.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of Dokriani glacier from 1992 to 2000, Garhwal Himalaya, India. Bulletin of Glaciological Research Japanese Society of Snow and Ice, 25, 9–17.

    Google Scholar 

  • Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., & Kaser, G. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852–856.

    Article  CAS  Google Scholar 

  • Ghosh, S., Pandey, A. C., Nathawat, M. S., Bahuguna, I. M., & Ajai (2013). Contrasting signals of glacier changes in Zanskar Valley, Jammu & Kashmir, India using remote sensing and GIS. Journal of Indian Society Remote Sensing, 42(4), 817–827.

    Article  Google Scholar 

  • Gilbert, R. (1977). Schoolboys on Kolahoi. Alpine Journal, 83, 174–178.

    Google Scholar 

  • Granshaw, F. D., & Fountain, A. G. (2006). Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. Journal of Glaciology, 52(177), 251–256.

    Article  CAS  Google Scholar 

  • Haeberli, W., Zemp, M., Hoelzle, M., Frauenfelder, R., Hoelzle, M., & Kaab, A. (2005). Fluctuations of glaciers 1995–2000 (Vol. 8). Paris: UNESCO.

    Google Scholar 

  • Hall, D. K., Bayr, K. J., Schoner, W., Bindschadler, R. A., & Chien, J. Y. L. (2003). Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sensing of Environment, 86, 566–577.

    Article  Google Scholar 

  • Immerzeel, W., van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328, 1382–1385.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001a). Climate change: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Intergovernmental Panel on Climate Change (IPCC) (2001b). Climate change impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • IPCC, 2007. Summary for Policymakers, In: Climate change (2007). The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L (Cambridge, UK and New York, USA: Cambridge University Press).

  • Kääb, A. (2005). Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote. Sensing of Environment, 94, 463–474.

    Article  Google Scholar 

  • Kadota, T., Seko, K., Aoki, T., Iwatan, S., & Yamaguchi, S. (2000). Shrinkage of the Khumbu glacier, east Nepal from 1978 to 1995. In proceedings of a workshop held at Sealtle, Washington, USA, September 2000. IAHS publ. no. 264.

  • Kamp, U., Byrne, M., & Bolch, T. (2011). Mapping glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of Ladakh, north-western India. International Journal of Mountain Sciences, 8, 374–389.

    Article  Google Scholar 

  • Kanth, T. A., Shah, A. A., & Hassan, Z. U. (2011). Geomorphologic character and receding trend of Kolahoi Glacier in Kashmir Himalaya. Recent Research in Science and Technology, 3, 68–73.

    Google Scholar 

  • Karimi, N., Eftekhari, M., Farajzadeh, M., Namdari, S., Moridnejad, A., & Karimi, D. (2014). Use of multitemporal satellite images to find some evidence for glacier changes in the Haft-Khan glacier, Iran. Arabian Journal of Geosciences, 8(8), 5879–5896.

    Article  Google Scholar 

  • Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., & Ohmura, A. (2006). Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophysical Research Letters, 33, 1–5.

    Article  Google Scholar 

  • Kaul, M. N. (1990). Glacial and fluvial geomorphology of Western Himalayas. New Delhi: Concept Publishing Company.

    Google Scholar 

  • Kulkarni, A. V. (1991). Glacier inventory in Himachal Pradesh using satellite images. Journal of the Indian Society of Remote Sensing, 19, 195–203.

    Article  Google Scholar 

  • Kulkarni, A. V., & Bahuguna, I. M. (2002). Glacial retreat in the Baspa Basin, Himalayas, monitored with satellite stereo data. Journal of Glaciology, 48, 171–172.

    Article  Google Scholar 

  • Kulkarni, A. V., Rathoe, B. P., Mahajan, S., & Mathur, P. (2005). Alarming retreat of Parbati Glacier, Beas basin, Himachal Pradesh. Current Science, 88, 1844–1850.

    Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science, 92(1), 69–74.

    Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in Himalayan cryosphere using remote sensing technique. International Journal of Remote Sensing, 32(3), 601–615.

    Article  Google Scholar 

  • Kumar, R., Hasnain, S., Wagnon, P., Arnaund, Y., Chevallier, P, Linda, A., & Sharma, P., (2007). Climate change signal detected through mass balance measurement on benchmark glacier, Himanchal Pradesh, India. Climate and anthropogenic impacts on the variability of water resources. Technical Document in Hydrology 80. Paris: UNESCO/UMR 5569, Hydro Sciences Montpellier, 65–74.

  • Manley, W.F. (2008). Geospatial inventory and analysis of glaciers: a case study for the eastern Alaska Range. In Williams, R.S., Jr. and J.G. Ferrigno, eds. Satellite Image Atlas of Glaciers of the World. Denver, CO, United States Geological Survey, K424–K439. (USGS Professional Paper 1386-K.

  • Mir, R. A., Jain, K. S., Saraf, A. K., & Goswami, A. (2014). Glacier changes using satellite data and effect of climate in Tirungkhad basin located in western Himalaya. Geocarto International, 29, 293–313.

    Article  Google Scholar 

  • Murtaza, K.O., & Romshoo, S.A. (2016). Recent glacier changes in the Kashmir Alpine Himalayas, India. Geocarto International, 1–18.

  • Nainwal, H. C., Negi, B. D. S., Chaudhary, M., Sajwan, K. S., & Gaurav, A. (2008). Temporal changes in rate of recession: evidences from Satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station Survey. Current Sciences, 94, 653–660.

    Google Scholar 

  • Nathawat, M.S., Pandey, A.C., Rai, P.K., & Bahuguna, I.M. (2008). Spatio-temporal dynamics of glaciers in Doda valley, Zanskar Range, Jammu & Kashmir, India. In Proceedings of the International Workshop on Snow, Ice, Glacier and Avalanches, Bombay, January 7–9, 2008: IIT Bombay, 256–264.

  • Negi, H. S., Saravana, G., Rout, R., & Snehmani (2013). Monitoring of great Himalayan glaciers in Patsio region, India using remote sensing and climatic observations. Current Science, 105, 1383–1392.

    Google Scholar 

  • Neve, E. F. (1910). Mt. Kolahoi and its northern glacier. Alpine Journal, 25, 39–42.

    Google Scholar 

  • Odell, N. E. (1963). The Kolahoi northern glacier, Kashmir. Journal of Glaciology, 4(35), 633–635.

    Article  Google Scholar 

  • Pandey, P., & Venkataraman, G. (2013). Changes in the glaciers of Chandra–Bhaga Basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing, 34, 5584–5597.

    Article  Google Scholar 

  • Paul, F., Huggel, C., Kääb, A., Kellenberger, T., & Maisch, M. (2003). Comparison of TM-derived glacier areas with higher resolution data sets. EARSeL eProc., 2, 15–21.

    Google Scholar 

  • Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., le bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., & Winsvold, S. (2013). On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63), 171–182.

    Article  Google Scholar 

  • Prasad, A. K., Yang, K. H. S., El-Askary, H. M., & Kafatos, M. (2009). Melting of major glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008). Annales Geophysicae, 27, 4505–4519.

    Article  Google Scholar 

  • Racoviteanu, A. E., Arnaud, Y., Williams, M. W., & Ordonez, J. (2008). Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology, 54(186), 499–510.

    Article  Google Scholar 

  • Racoviteanu, A. E., Paul, F., Raup, B., Khalsa, S. J. S., & Armstrong, R. (2009). Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 global land ice measurements from space (GLIMS) workshop, boulder, Colorado, USA. Annals of Glaciology, 50(53), 53–69.

    Article  Google Scholar 

  • Racoviteanu, A., Nicholson, L., & Arnaud, Y. (2013). Surface characteristics of debris-covered glacier tongues in the Khumbu Himalaya derived from remote sensing texture analysis, European Geophysical Union (EGU) General Assembly, Vienna, Austria, 7–12 April.

  • Racoviteanu, A. E., Arnaud, Y., Williams, M. W., & Manley, W. F. (2015). Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalayas. The Cryosphere, 9, 505–523.

    Article  Google Scholar 

  • Rankl, M., Kienholz, C., & Braun, M. (2014). Glacier changes in the Karakoram region mapped by multimission satellite imagery. The Cryosphere, 8, 977–989.

    Article  Google Scholar 

  • Ren, J., Jing, Z., Pu, J., & Qin, X. (2006). Glacier variations and climate change in the central Himalaya over the past few decades. Annals of Glaciology, 43, 218–222.

    Article  Google Scholar 

  • Sangewar, C. V., & Kulkarni, A.V. (2011). Observational studies of the recent past. In Report of the Study Group on Himalayan glaciers prepared for the Office of the Principal Scientific Adviser to the Government of India, PSA/2011/2, 25–76.

  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosciences, 4, 156–159.

    Article  CAS  Google Scholar 

  • Schmidt, S., & Nusser, M. (2009). Fluctuations of Raikot glaciers during the past 70 years: a case study from the Nanga Parbat massif, northern Pakistan. Journal of Glaciology, 55(194), 949–959.

    Article  Google Scholar 

  • Shah, A.A., & Kanth, T.A. (2012). Impact of glaciers on the hydrology of Kashmir Rivers: a case study of Kolahoi Glacier. An unpublished M Phil dissertation, Department of Geography and Regional Development, University of Kashmir.

  • Shahgedanova, M., Nosenko, G., Kutuzov, S., Rototaeva, O., & Khromova, T. (2014). Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. The Cryosphere, 8, 2367–2379.

    Article  Google Scholar 

  • Shen, Y., & Shiyin, L. (2003). Glaciers mass balance change in Tailanhe River water sheds on the south slope of the Tianshan Mountains and its impact on water resource. Journal of Glaciology and Geocryology (in Chinese), 25(2), 124–129.

    Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12, 2775–2787.

    Article  Google Scholar 

  • Shukla, A., & Ali, I. (2016). A hierarchical knowledge based classification for glacier terrain mapping—case study from Kolahoi Glacier, Kashmir Himalayas. Annals of Glaciology, 57, 1–10.

    Article  Google Scholar 

  • Shukla, A., & Qadir, J. (2016). Differential response of glaciers with varying debris coverextent: evidence from changing glacier parameters. International Journal of Remote Sensing, 37(11), 2453–2479.

    Article  Google Scholar 

  • Shukla, A., Yousuf, B., 2016. Evaluation of multisource data for glacier terrain mapping: a neural net approach. Geocarto International, 1–45.

  • Shukla, S. P., Siddiqui, M. A., Hampaiash, P., & Swaroop, S. (2001). Secular movement studies of selected glaciers of Yamuna and Ghagra basins, Dhradun and Tehri, Uttarakashi and Pithoragarh districts, U.P. Geological Survey India Records, 133, 161–165.

    Google Scholar 

  • Sorg, A., Bolch, T., Stoffel, M., Solomina, O., & Beniston, M. (2012). Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2, 725–731.

    Article  Google Scholar 

  • Svoboda, F., & Paul, F. (2009). A new glacier inventory on southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions. Annals of Glaciology, 50(53), 11–21.

    Article  Google Scholar 

  • Thakuri, S., Salerno, F., Smiraglia, C., Bolch, T., D’Agata, C., Viviano, G., & Tartari, G. (2014). Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. The Cryosphere, 8, 1297–1315.

    Article  Google Scholar 

  • Thayyen, R. J., Gergan, J. T., & Dobhal, D. P. (2005). Slope lapse rates of temperature in Din Gad (Dokriani Glacier) catchment, Garhwal Himalaya, India. Bulletin of Glaciological Research, Japanese Society of Snow and Ice, 22, 31–37.

    Google Scholar 

  • Unger-Shayesteh, K., Vorogushyn, S., Farinotti, D., Gafurov, A., Duethmann, D., Mandychev, A., & Merz, B. (2013). What do we know about past changes in the water cycle of central Asian headwaters? A review. Global and Planetary Change, 110, 4–25.

    Article  Google Scholar 

  • Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Jiawen, R., Rignot, E., Solomina, O., Steffen, K., & Zhang, T. (2013). Observations: cryosphere. In Stocker TF and 9 others eds. Climate change 2013: the physical science basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.

  • Veettil, K. B. (2012). A remote sensing approach for monitoring debris-covered glaciers in the high altitude Karakoram Himalayas. International Journal of Geomatics and Geosciences, 2(3), 833–841.

    Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., & Vincent, C. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611.

    Article  Google Scholar 

  • Wang, Y., Hou, S., & Liu, Y. (2009). Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72–2001/02. Annals of Glaciology, 50(53), 39–45.

    Article  Google Scholar 

  • Williams Jr., R. S., Hall, D. K., Sigurdsson, O., & Chien, J. Y. L. (1997). Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–92. Annals of Glaciology, 24, 72–80.

    Article  Google Scholar 

  • World Glacier Monitoring Service (WGMS) (2008). In M. Zemp, I. Roer, A. Kääb, M. Hoelzle, F. Paul, & W. Haeberli (Eds.), Global glacier changes: facts and figures. Zürich: World Glacier Monitoring Service/ United Nations Environment Programme.

    Google Scholar 

  • Zhang, J., & Goodchild, M. F. (2002). Uncertainty in geographical information. London: Taylor and Francis.

    Book  Google Scholar 

  • Zhang, Y., Fujita, K., Liu, S., Liu, Q., & Nuimura, T. (2011). Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology, 57(206), 1147–1157.

    Article  Google Scholar 

Download references

Acknowledgements

Aparna Shukla is grateful to Prof. Anil K. Gupta, director, WIHG, Dehradun for providing requisite facilities and support. Iram Ali thanks the Department of Science and Technology (DST), New Delhi, India for her research fellowship under WOS-A scheme wide file no. SR/WOS-A/ES-39/2013. The authors are thankful to Midhat Fayaz, Khalid Omar Murtaza, Ishfaq Paul, and Omar Paul for their assistance in field survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Ali, I., Hasan, N. et al. Dimensional changes in the Kolahoi glacier from 1857 to 2014. Environ Monit Assess 189, 5 (2017). https://doi.org/10.1007/s10661-016-5703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5703-7

Keywords

Navigation