Skip to main content

Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea


A remote sensing technique has been developed to detect physiological condition of phytoplankton using in situ and moderate imaging spectroradiometer (MODIS)-Aqua data. The recurring massive mixed algal bloom of diatom and Noctiluca scintillans in the Northern Arabian Sea during winter-spring was used as test bed to study formation, growth and degradation of phytoplankton. The ratio of chlorophyll (chl) to particulate organic carbon (POC) was considered as an indicator of phytoplankton physiological condition and used for the approach development. Algal blooms represent the areas of new production, and therefore, knowledge of their degradation is important to the study microbial loop and export carbon flux. Relation of chl/POC ratio with bacterial abundance revealed Gaussian distribution. Bacteria were strongly correlated with POC, and hence, the latter which is available from satellite data could be used as a proxy for remote assessment of bacteria. Thresholds for active and degrading phytoplankton were determined using the ratio computed from the satellite data. The criteria were implemented on MODIS data to generate an image representing distribution of degrading algal bloom. Bacteria abundance data from two validation cruises during dinoflagellate and cyanobacteria bloom confirmed well match up of phytoplankton degradation information from the satellite. Comparison of environmental parameters during decay phase of dinoflagellate (N. scintillans bloom (winter) and Trichodesmium bloom (summer) revealed that degradation after active Trichodesmium bloom was more severe as compared to the N. scintillans. The present study also highlights the prediction capability of phytoplankton degradation using a time series of satellite retrieved chlorophyll/POC images.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  • Bird, D. F., & Kalff, J. (1984). Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Science, 41, 1015–1023.

    Article  Google Scholar 

  • Cannizzaro, J. P., Carder, K. L., Chen, F. R., Heil, C. A., & Vargo, G. A. (2008). A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data. Continental Shelf Research, 28, 137–158.

    Article  Google Scholar 

  • Capone, D. G., Zehr, J., Paerl, H., Bergman, B., & Carpenter, E. J. (1997). Trichodesmium—a globally significant marine cyanobacterium. Science, 276, 1221–1229.

    CAS  Article  Google Scholar 

  • Capone, D. G., Subramaniam, A., Montoya, J., Voss, M., Humborg, C., Johansen, A., et al. (1998). An extensive bloom of the NZ-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Marine Ecology Progress Series, 172, 281–292.

    Article  Google Scholar 

  • Cole, J. J., Findlay, S., & Pace, M. L. (1988). Bacterial production in fresh and saltwater: a cross-system overview. Marine Ecology Progress Series, 43, 1–10.

    Article  Google Scholar 

  • Dwivedi, R., Rafeeq, M., Smitha, B. R., Padmakumar, K. B., Lathika, C. T., Sanjeevan, V. N., et al. (2015). Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques. Environmental Monitoring and Assessment, 187, 51. doi:10.1007/s10661 015-4291-2.

    CAS  Article  Google Scholar 

  • Gomes, H. R., Goes, J. I., Matondkar, S. G. P., Buskey, E. J., Basu, S., Parab, S. G., et al. (2014). Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature, 5, 4862.

    CAS  Google Scholar 

  • Helly, J. J., & Levin, L. A. (2004). Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Research Part I, 51, 1159–1168.

    CAS  Article  Google Scholar 

  • Johnson, J. M., & Buchanan, C. (2014). Revisiting the Chesapeake Bay phytoplankton index of biotic integrity. Environmental Monitoring and Assessment, 186(3), 1431–1451.

    CAS  Article  Google Scholar 

  • Karl, D. M., Michaels, A., Bergman, B., Capone, D. G., Carpenter, E. J., Letelier, R. F., et al. (2002). Dinitrogen fixation in the world’s oceans. Biogeochemistry, 57, 47–98.

    Article  Google Scholar 

  • Kumar, S. P., Ramaiah, N., Gauns, M., Sarma, V. V. S. S., Muralidharan, P. M., Raghukumar, S., et al. (2001). Physical forcing of biological productivity in the Northern Arabian Sea during the northeast monsoon. Deep Sea Research Part II, 48, 1115–1126.

    Article  Google Scholar 

  • Matondkar, S. G. P., Bhat, S. R., Dwivedi, R. M., & Nayak, S. R. (2004). Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea. Harmful Algae News, 26, 4–5.

    Google Scholar 

  • Matondkar, S.G. P., Sushma, P., Desa G.E., & Dwivedi, R.M. (2006). Basin scale distribution of Trichodesmium spp. in the Arabian Sea using Oceansat I/ OCM. In J. F. Robert, K. A. Vijay, K. Hiroshi, N. Shailesh, and P. Delu (Eds), Proc. SPIE 6406, Remote Sensing of the Marine Environment, doi: 10.1117/12.693687.

  • McCreary, P. J., Kohler, K. E., Hood, R. R., Smith, S., Kindle, J., Fischer, A. S., et al. (2001). Influences of diurnal and intraseasonal forcing on mixed-layer and biological variability in the central Arabian Sea. Journal of Geophysical Research, 106(C4), 7139–7155.

    Article  Google Scholar 

  • Morrison, J. M., Codispoti, L. A., Smith, S. L., Wishner, K., Charles, F., Wilford, D., et al. (1999). The oxygen minimum zone in the Arabian Sea during 1995. Deep-Sea Research II, 1903–1931.

  • O’Neil, J. M., & Roman, M. R. (1992). Grazers and associated organisms of Trichodesmium. In E. J. Carpenter, D. G. Capone, & J. Rueter (Eds.), Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs (pp. 61–73). The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.

    Google Scholar 

  • Prasanna, K. S., David, T. D., Byju, P., Narvekar, J., Yoneyama, K., Nakatani, N., et al. (2012). Bio-physical coupling and ocean dynamics in the central equatorial Indian Ocean during 2006 Indian Ocean Dipole. Geophysical Research Letters, 39, 1–6.

    Google Scholar 

  • Ribes, M., Comma, R., & Gili, J. M. (1999). Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate in a shallow near-bottom ecosystem at the Northwestern Mediterranean Sea. Journal of Plankton Research, 21, 1077–1100.

    Article  Google Scholar 

  • Ryan, J. P., Polito, P. S., Strutton, P. G., & Chavez, F. P. (2002). Unusual large-scale phytoplankton blooms in the equatorial Pacific. Progress in Oceanography, 55, 263–285.

    Article  Google Scholar 

  • Sergey, P., & Nikolay, N. (2012). Mesoscale eddies of Arabian Sea: physical-biological interactions. International Journal of Marine Sciences, 2(7), 51–52.

    Google Scholar 

  • Simon, A., & Shanmugam, P. (2012). An algorithm for classification of algal blooms using MODIS-Aqua data in oceanic waters around India. Advances in Remote Sensing, 1, 35–51.

    Article  Google Scholar 

  • Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Rottgers, R., et al. (2008). Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Ocean. Biogeosciences, 5, 171–201.

    CAS  Article  Google Scholar 

  • Tomlinson, M. C., Wynne, T. T., & Stumpf, R. P. (2009). An evaluation of remote sensing techniques for enhanced detection of toxic dinoflagellate, Karenia brevis. Remote Sensing of Environment, 113, 598–609.

    Article  Google Scholar 

  • Wyrtki, K. (1962). The oxygen minima in relation to ocean circulation. Deep Sea Research, 9, 11–23.

    CAS  Google Scholar 

Download references


Access of Level 3 MODIS data from NASA’s Ocean Color Web facilitated this study and is gratefully acknowledged. Authors are thankful to the secretary, Ministry of Earth Sciences, Govt. of India for providing an opportunity to carry out this study.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Dwivedi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Priyaja, P., Dwivedi, R., Sini, S. et al. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea. Environ Monit Assess 188, 662 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Algal bloom
  • Degradation
  • Remote sensing
  • Arabian Sea