Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa

  • Quan Zhang
  • Hang Zhou
  • Zhe Li
  • Jianqiang Zhu
  • Cong Zhou
  • Meirong ZhaoEmail author


The use of glyphosate, which is a well-known sterilant herbicide, has been growing rapidly because the area under the cultivation of genetically modified crops that are tolerant to this herbicide has increased. Glyphosate can enter into aquatic systems through many different ways. However, information on the potential risks of glyphosate at environmentally relevant levels to aquatic systems is still limited. In this study, we selected the cyanobacterium Microcystis aeruginosa FACHB-905 (M. aeruginosa) as a model organism to evaluate the effects of glyphosate at environmentally relevant concentrations on the former’s growth and microcystin (MC) production. Our results show that low levels of glyphosate stimulate the growth of M. aeruginosa. Subsequently, there was significant increase in the total MC-LR and intracellular MC-LR, but not in extracellular MC-LR, after exposure to 0.1–2 mg/L of glyphosate. The increase in total MC-LR is mainly due to the effects of glyphosate on the cell density of M. aeruginosa. The data provided here show that low level of glyphosate in a water body is a potential environmental risk factor that stimulates the growth and enhances MC production in M. aeruginosa, which should arouse great concern.


Glyphosate Cell density Microcystin Microcystis aeruginosa 



This study was funded by the National Natural Science Foundation of China (21307109, 21337005, and 21377119).


  1. Botta, F., Lavison, G., Couturier, G., Alliot, F., Moreau-Guigon, E., Fauchon, N., Guery, B., Chevreuil, M., & Blanchoud, H. (2009). Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere, 77(1), 133–139.CrossRefGoogle Scholar
  2. Calabrese, E. J., & Baldwin, L. A. (2003). Hormesis: the dose-response revolution. Annual Review of Pharmacology & Toxicology, 43(1), 175–197.CrossRefGoogle Scholar
  3. Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16–30.CrossRefGoogle Scholar
  4. Currie, Z., Prosser, R. S., Rodriguez-Gil, J. L., Mahon, K., Poirier, D., & Solomon, K. R. (2015). Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms. Environmental Toxicology & Chemistry, 34(5), 1178–1184.CrossRefGoogle Scholar
  5. Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms. Harmful Algae, 8(5), 715–725.CrossRefGoogle Scholar
  6. Demir, U. E. N. (2009). Toxicity of glyphosate and ethoxysulfuron to the green microalgae (Scenedesmus obliquus). Journal of Chemistry, 21(3), 2163–2169.Google Scholar
  7. Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64(4), 319–325.CrossRefGoogle Scholar
  8. Jähnichen, S., Long, B. M., & Petzoldt, T. (2011). Microcystin production by Microcystis aeruginosa: direct regulation by multiple environmental factors. Harmful Algae, 12(4), 95–104.CrossRefGoogle Scholar
  9. Jiang, J., Gu, X., Song, R., Zhang, Q., Geng, J., Wang, X., & Yang, L. (2011). Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology, 20(5), 1000–1009.CrossRefGoogle Scholar
  10. Kier, L. D., & Kirkland, D. J. (2013). Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Critical Reviews in Toxicology, 43(4), 283–315.CrossRefGoogle Scholar
  11. Kist, L. W., Rosemberg, D. B., Pereira, T. C. B., Azevedo, M. B. D., Richetti, S. K., Leão, J. D. C., Yunes, J. S., Bonan, C. D., & Bogo, M. R. (2012). Microcystin-LR acute exposure increases AChE activity via transcriptional ache activation in zebrafish ( Danio rerio ) brain. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 155(2), 247–252.CrossRefGoogle Scholar
  12. Kong, F. X., & Gao, G. (2005). Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes. Acta Ecological Sinica, 25(3), 589–595.Google Scholar
  13. Kwiatkowska, M., Paweł, J., & Bukowska, B. (2013). Glyphosate and its formulations—toxicity, occupational and environmental exposure. Medycyna Pracy, 64(5), 717–729.Google Scholar
  14. Ma, M., Liu, R., Liu, H., & Qu, J. (2012). Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation. Journal of Hazardous Materials, 217–218(3), 279–285.CrossRefGoogle Scholar
  15. Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology, 15(5), 1239–1253.CrossRefGoogle Scholar
  16. Nishiwaki-Matsushima, R., Ohta, T., Nishiwaki, S., Suganuma, M., Kohyama, K., Ishikawa, T., Carmichael, W. W., & Fujiki, H. (1991). Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of Cancer Research & Clinical Oncology, 118(6), 420–424.CrossRefGoogle Scholar
  17. Ou, H., Gao, N., Wei, C., Yang, D., & Qiao, J. (2012). Immediate and long-term impacts of potassium permanganate on photosynthetic activity, survival and microcystin-LR release risk of Microcystis aeruginosa. Journal of Hazardous Materials, 219–220, 267–275.CrossRefGoogle Scholar
  18. Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65(4), 995–1010.CrossRefGoogle Scholar
  19. Papadopoulos, N. G. (1995). Iron-stimulated toxin production in Microcystis aeruginosa. Applied & Environmental Microbiology, 61(2), 797–800.Google Scholar
  20. Qiu, H., Geng, J., Ren, H., Xia, X., Wang, X., & Yu, Y. (2013). Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its roundup ®; formulation. Journal of Hazardous Materials, 248–249(6), 172–176.CrossRefGoogle Scholar
  21. Sáenz, M. E., & Marzio, W. D. D. (2009). Ecotoxicity of herbicide glyphosate to four chlorophyceaen freshwater algae. Limnetica, 28(1), 149–158.Google Scholar
  22. Sun, Q. F. (2013). Exploration on technology of efficient and environment-friendly herbicide glyphosate. Modern Agricultural Science & Technology, 19(1), 137.Google Scholar
  23. Svircev, Z., Baltić, V., Gantar, M., Juković, M., Stojanović, D., & Baltić, M. (2010). Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. Journal of Environmental Science & Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 28(1), 39–59.CrossRefGoogle Scholar
  24. Tian, S., Liu, Z., Weng, J., & Zhang, Y. (1997). Growth of Chlorella vulgaris in cultures with low concentration dimethoate as source of phosphorus. Chemosphere, 35(11), 2713–2718.CrossRefGoogle Scholar
  25. Tonk, L., Visser, P. M., Christiansen, G., Elke, D., Snelder, E. O. F. M., Wiedner, C., Mur, L. R., & Huisman, J. (2005). The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Applied & Environmental Microbiology, 71(9), 5177–5181.CrossRefGoogle Scholar
  26. USEPA (2009). Basic Information about Glyphosate in Drinking Water. Drinking Water Contaminants–Standards and Regulations. Available At:
  27. Wang, J., & Xie, P. (2007). Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa. Environmental Geochemistry & Health, 29(5), 375–383.CrossRefGoogle Scholar
  28. Wang, C., Zhang, Q., & Zhang, X. F. (2010). Understanding the endocrine disruption of chiral pesticides: the enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China (Chemistry), 53(5), 1003–1009.CrossRefGoogle Scholar
  29. Wang, X., Sun, M., Xie, M., Liu, M., Luo, L., Li, P., & Kong, F. (2013). Differences in microcystin production and genotype composition among Microcystis colonies of different sizes in Lake Taihu. Water Research, 47(15), 5659–5669.CrossRefGoogle Scholar
  30. Zhang, Q., Lu, M. Y., Wang, C., Du, J., Zhou, P. X., & Zhao, M. R. (2014a). Characterization of estrogen receptor α activities in polychlorinated biphenyls by in vitro dual-luciferase reporter gene assay. Environmental Pollution, 189, 169–175.CrossRefGoogle Scholar
  31. Zhang, Q., Ye, J. J., Chen, J., Xu, H. J., Wang, C., & Zhao, M. R. (2014b). Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environmental Pollution, 185, 258–265.CrossRefGoogle Scholar
  32. Zhang, Q., Qin, S., Li, J. l., Zou, M. l., Zhang, C. X., & Zhang, Q. (2016). Alteration of the enantioselective toxicity of diclofop acid by Nonylphenol: effect on ascorbate-glutathione cycle in Microcystis aeruginosa. Chirality, 28(6), 475–481.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Quan Zhang
    • 1
  • Hang Zhou
    • 1
  • Zhe Li
    • 1
  • Jianqiang Zhu
    • 1
  • Cong Zhou
    • 1
  • Meirong Zhao
    • 1
    Email author
  1. 1.College of EnvironmentZhejiang University of TechnologyHangzhouChina

Personalised recommendations