Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa

Abstract

The use of glyphosate, which is a well-known sterilant herbicide, has been growing rapidly because the area under the cultivation of genetically modified crops that are tolerant to this herbicide has increased. Glyphosate can enter into aquatic systems through many different ways. However, information on the potential risks of glyphosate at environmentally relevant levels to aquatic systems is still limited. In this study, we selected the cyanobacterium Microcystis aeruginosa FACHB-905 (M. aeruginosa) as a model organism to evaluate the effects of glyphosate at environmentally relevant concentrations on the former’s growth and microcystin (MC) production. Our results show that low levels of glyphosate stimulate the growth of M. aeruginosa. Subsequently, there was significant increase in the total MC-LR and intracellular MC-LR, but not in extracellular MC-LR, after exposure to 0.1–2 mg/L of glyphosate. The increase in total MC-LR is mainly due to the effects of glyphosate on the cell density of M. aeruginosa. The data provided here show that low level of glyphosate in a water body is a potential environmental risk factor that stimulates the growth and enhances MC production in M. aeruginosa, which should arouse great concern.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Botta, F., Lavison, G., Couturier, G., Alliot, F., Moreau-Guigon, E., Fauchon, N., Guery, B., Chevreuil, M., & Blanchoud, H. (2009). Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere, 77(1), 133–139.

    CAS  Article  Google Scholar 

  2. Calabrese, E. J., & Baldwin, L. A. (2003). Hormesis: the dose-response revolution. Annual Review of Pharmacology & Toxicology, 43(1), 175–197.

    CAS  Article  Google Scholar 

  3. Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16–30.

    CAS  Article  Google Scholar 

  4. Currie, Z., Prosser, R. S., Rodriguez-Gil, J. L., Mahon, K., Poirier, D., & Solomon, K. R. (2015). Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms. Environmental Toxicology & Chemistry, 34(5), 1178–1184.

    CAS  Article  Google Scholar 

  5. Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms. Harmful Algae, 8(5), 715–725.

    CAS  Article  Google Scholar 

  6. Demir, U. E. N. (2009). Toxicity of glyphosate and ethoxysulfuron to the green microalgae (Scenedesmus obliquus). Journal of Chemistry, 21(3), 2163–2169.

    Google Scholar 

  7. Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64(4), 319–325.

    CAS  Article  Google Scholar 

  8. Jähnichen, S., Long, B. M., & Petzoldt, T. (2011). Microcystin production by Microcystis aeruginosa: direct regulation by multiple environmental factors. Harmful Algae, 12(4), 95–104.

    Article  Google Scholar 

  9. Jiang, J., Gu, X., Song, R., Zhang, Q., Geng, J., Wang, X., & Yang, L. (2011). Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology, 20(5), 1000–1009.

    CAS  Article  Google Scholar 

  10. Kier, L. D., & Kirkland, D. J. (2013). Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Critical Reviews in Toxicology, 43(4), 283–315.

    CAS  Article  Google Scholar 

  11. Kist, L. W., Rosemberg, D. B., Pereira, T. C. B., Azevedo, M. B. D., Richetti, S. K., Leão, J. D. C., Yunes, J. S., Bonan, C. D., & Bogo, M. R. (2012). Microcystin-LR acute exposure increases AChE activity via transcriptional ache activation in zebrafish ( Danio rerio ) brain. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 155(2), 247–252.

    CAS  Article  Google Scholar 

  12. Kong, F. X., & Gao, G. (2005). Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes. Acta Ecological Sinica, 25(3), 589–595.

    CAS  Google Scholar 

  13. Kwiatkowska, M., Paweł, J., & Bukowska, B. (2013). Glyphosate and its formulations—toxicity, occupational and environmental exposure. Medycyna Pracy, 64(5), 717–729.

    CAS  Google Scholar 

  14. Ma, M., Liu, R., Liu, H., & Qu, J. (2012). Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation. Journal of Hazardous Materials, 217–218(3), 279–285.

    Article  Google Scholar 

  15. Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology, 15(5), 1239–1253.

    CAS  Article  Google Scholar 

  16. Nishiwaki-Matsushima, R., Ohta, T., Nishiwaki, S., Suganuma, M., Kohyama, K., Ishikawa, T., Carmichael, W. W., & Fujiki, H. (1991). Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of Cancer Research & Clinical Oncology, 118(6), 420–424.

    Article  Google Scholar 

  17. Ou, H., Gao, N., Wei, C., Yang, D., & Qiao, J. (2012). Immediate and long-term impacts of potassium permanganate on photosynthetic activity, survival and microcystin-LR release risk of Microcystis aeruginosa. Journal of Hazardous Materials, 219–220, 267–275.

    Article  Google Scholar 

  18. Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65(4), 995–1010.

    CAS  Article  Google Scholar 

  19. Papadopoulos, N. G. (1995). Iron-stimulated toxin production in Microcystis aeruginosa. Applied & Environmental Microbiology, 61(2), 797–800.

    Google Scholar 

  20. Qiu, H., Geng, J., Ren, H., Xia, X., Wang, X., & Yu, Y. (2013). Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its roundup ®; formulation. Journal of Hazardous Materials, 248–249(6), 172–176.

    Article  Google Scholar 

  21. Sáenz, M. E., & Marzio, W. D. D. (2009). Ecotoxicity of herbicide glyphosate to four chlorophyceaen freshwater algae. Limnetica, 28(1), 149–158.

    Google Scholar 

  22. Sun, Q. F. (2013). Exploration on technology of efficient and environment-friendly herbicide glyphosate. Modern Agricultural Science & Technology, 19(1), 137.

    Google Scholar 

  23. Svircev, Z., Baltić, V., Gantar, M., Juković, M., Stojanović, D., & Baltić, M. (2010). Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. Journal of Environmental Science & Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 28(1), 39–59.

    CAS  Article  Google Scholar 

  24. Tian, S., Liu, Z., Weng, J., & Zhang, Y. (1997). Growth of Chlorella vulgaris in cultures with low concentration dimethoate as source of phosphorus. Chemosphere, 35(11), 2713–2718.

    CAS  Article  Google Scholar 

  25. Tonk, L., Visser, P. M., Christiansen, G., Elke, D., Snelder, E. O. F. M., Wiedner, C., Mur, L. R., & Huisman, J. (2005). The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Applied & Environmental Microbiology, 71(9), 5177–5181.

    CAS  Article  Google Scholar 

  26. USEPA (2009). Basic Information about Glyphosate in Drinking Water. Drinking Water Contaminants–Standards and Regulations. Available At: https://www.epa.gov/dwstandardsregulations

  27. Wang, J., & Xie, P. (2007). Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa. Environmental Geochemistry & Health, 29(5), 375–383.

    Article  Google Scholar 

  28. Wang, C., Zhang, Q., & Zhang, X. F. (2010). Understanding the endocrine disruption of chiral pesticides: the enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China (Chemistry), 53(5), 1003–1009.

    CAS  Article  Google Scholar 

  29. Wang, X., Sun, M., Xie, M., Liu, M., Luo, L., Li, P., & Kong, F. (2013). Differences in microcystin production and genotype composition among Microcystis colonies of different sizes in Lake Taihu. Water Research, 47(15), 5659–5669.

    CAS  Article  Google Scholar 

  30. Zhang, Q., Lu, M. Y., Wang, C., Du, J., Zhou, P. X., & Zhao, M. R. (2014a). Characterization of estrogen receptor α activities in polychlorinated biphenyls by in vitro dual-luciferase reporter gene assay. Environmental Pollution, 189, 169–175.

    CAS  Article  Google Scholar 

  31. Zhang, Q., Ye, J. J., Chen, J., Xu, H. J., Wang, C., & Zhao, M. R. (2014b). Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environmental Pollution, 185, 258–265.

    CAS  Article  Google Scholar 

  32. Zhang, Q., Qin, S., Li, J. l., Zou, M. l., Zhang, C. X., & Zhang, Q. (2016). Alteration of the enantioselective toxicity of diclofop acid by Nonylphenol: effect on ascorbate-glutathione cycle in Microcystis aeruginosa. Chirality, 28(6), 475–481.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (21307109, 21337005, and 21377119).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meirong Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhou, H., Li, Z. et al. Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa . Environ Monit Assess 188, 632 (2016). https://doi.org/10.1007/s10661-016-5627-2

Download citation

Keywords

  • Glyphosate
  • Cell density
  • Microcystin
  • Microcystis aeruginosa