Remotely sensing the German Wadden Sea—a new approach to address national and international environmental legislation

  • Gabriele Müller
  • Kerstin Stelzer
  • Susan Smollich
  • Martin Gade
  • Winny Adolph
  • Sabrina Melchionna
  • Linnea Kemme
  • Jasmin Geißler
  • Gerald Millat
  • Hans-Christian Reimers
  • Jörn Kohlus
  • Kai Eskildsen
Article

Abstract

The Wadden Sea along the North Sea coasts of Denmark, Germany, and the Netherlands is the largest unbroken system of intertidal sand and mud flats in the world. Its habitats are highly productive and harbour high standing stocks and densities of benthic species, well adapted to the demanding environmental conditions. Therefore, the Wadden Sea is one of the most important areas for migratory birds in the world and thus protected by national and international legislation, which amongst others requires extensive monitoring. Due to the inaccessibility of major areas of the Wadden Sea, a classification approach based on optical and radar remote sensing has been developed to support environmental monitoring programmes. In this study, the general classification framework as well as two specific monitoring cases, mussel beds and seagrass meadows, are presented. The classification of mussel beds profits highly from inclusion of radar data due to their rough surface and achieves agreements of up to 79 % with areal data from the regular monitoring programme. Classification of seagrass meadows reaches even higher agreements with monitoring data (up to 100 %) and furthermore captures seagrass densities as low as 10 %. The main classification results are information on area and location of individual habitats. These are needed to fulfil environmental legislation requirements. One of the major advantages of this approach is the large areal coverage with individual satellite images, allowing simultaneous assessment of both accessible and inaccessible areas and thus providing a more complete overall picture.

Keywords

Satellite remote sensing Monitoring Seagrass Mussel beds Environmental EU directives Wadden Sea 

References

  1. Adam, S., De Backer, A., De Wever, A., Sabbe, K., Toorman, E. A., Vincx, M., et al. (2011). Bio-physical characterization of sediment stability in mudflats using remote sensing: a laboratory experiment. Continental Shelf Research, 31(10, Supplement), S26–S35.CrossRefGoogle Scholar
  2. Alexandridis, T. K., Lazaridou, E., Tsirika, A., & Zalidis, G. C. (2009). Using Earth Observation to update a Natura 2000 habitat map for a wetland in Greece. Journal of Environmental Management, 90(7), 2243–2251.CrossRefGoogle Scholar
  3. Allewijn, R. (1992). Applications of remote sensing for tidal waters, coastal areas and inland waters. In European ‘International Space Year’ Conference 1992—remote sensing for environmental monitoring and resource management, Munich, Germany, 30 March - 4 April 1992 (Vol. 2, pp. 651–654). European Space Agency.Google Scholar
  4. Bartholdy, J., & Folving, S. (1986). Sediment classification and surface type mapping in the Danish Wadden Sea by remote sensing. Netherlands Journal of Sea Research, 20(4), 337–345.CrossRefGoogle Scholar
  5. Bortels, L., Chan, J. C. W., Merken, R., & Koedam, N. (2011). Long-term monitoring of wetlands along the Western-Greek bird migration route using Landsat and ASTER satellite images: Amvrakikos Gulf (Greece). Journal for Nature Conservation, 19(4), 215–223.CrossRefGoogle Scholar
  6. Brockmann, C., & Stelzer, K. (2008). Optical remote sensing of intertidal flats. In V. Barale, & M. Gade (Eds.), Remote sensing of the european seas (pp. 117–128). Springer Science + Business Media B. V.Google Scholar
  7. Choe, B.-H., Kim, D.-J., Hwang, J.-H., Oh, Y., & Moon, W. M. (2012). Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data. Estuarine, Coastal and Shelf Science, 97, 28–37.CrossRefGoogle Scholar
  8. Dame, R., Dankers, N., Prins, T., Jongsma, H., & Smaal, A. (1991). The influence of mussel beds on nutrients in the western Wadden Sea and eastern Scheldt estuaries. Estuaries, 14(2), 130–138.CrossRefGoogle Scholar
  9. Dankers, N., & Zuidema, D. R. (1995). The role of the mussel (Mytilus edulis L.) and mussel culture in the Dutch Wadden Sea. Estuaries, 18(1A), 71–80.CrossRefGoogle Scholar
  10. Dennert-Möller, E. (1982). Erstellung einer Sedimentkarte der nordfriesischen Wattgebiete aus Landsat-Bilddaten. Bildmessung und Luftbildwesen, 50, 204–206.Google Scholar
  11. Deronde, B., Kempeneers, P., & Forster, R. M. (2006). Imaging spectroscopy as a tool to study sediment characteristics on a tidal sandbank in the Westerschelde. Estuarine, Coastal and Shelf Science, 69(3–4), 580–590.CrossRefGoogle Scholar
  12. Doerffer, R., & Murphy, D. (1989). Factor analysis and classification of remotely sensed data for monitoring tidal flats. Helgoländer Meeresuntersuchungen, 43(3–4), 275–293.CrossRefGoogle Scholar
  13. Folving, S. (1984). The Danish Wadden Sea, thematic mapping by means of remote sensing. Folia geografica danica, 5, 1–56.Google Scholar
  14. Fraser, R. H., Olthof, I., & Pouliot, D. (2009). Monitoring land cover change and ecological integrity in Canada’s national parks. Remote Sensing of Environment, 113(7), 1397–1409.CrossRefGoogle Scholar
  15. Gade, M., & Melchionna, S. (2016). Joint use of multiple synthetic aperture radar imagery for the detection of bivalve beds and morphological changes on intertidal flats. Estuarine, Coastal and Shelf Science, 171, 1–10. doi:10.1016/j.ecss.2016.01.025.CrossRefGoogle Scholar
  16. Gade, M., & Stelzer, K. (2010). Multi-sensor remote sensing of the Wadden Sea ecosystem on the North Sea coast. Ocean from Space 2010 Symposium, Venice, Italy, 26–30 April 2010.Google Scholar
  17. Gade, M., Alpers, W., Melsheimer, C., & Tanck, G. (2008). Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data. Remote Sensing of Environment, 112(4), 1603–1613.CrossRefGoogle Scholar
  18. Gade, M., Melchionna, S., Stelzer, K., & Kohlus, J. (2014). Multi-frequency SAR data help improving the monitoring of intertidal flats on the German North Sea coast. Estuarine, Coastal and Shelf Science, 140, 32–42.CrossRefGoogle Scholar
  19. Hearn, S. M., Healey, J. R., McDonald, M. A., Turner, A. J., Wong, J. L. G., & Stewart, G. B. (2011). The repeatability of vegetation classification and mapping. Journal of Environmental Management, 92(4), 1174–1184.CrossRefGoogle Scholar
  20. HIMOM (2005). Final Report EU Contract EVK3-CT-2001-00052.Google Scholar
  21. Ibrahim, E., & Monbaliu, J. (2011). The suitability of spaceborne multispectral data for sediment characterization: a case study. Coastal, Estuarine & Shelf Science, 92, 437–445.CrossRefGoogle Scholar
  22. Jung, R., & Ehlers, M. (2014). A hierarchical classification of the German tidal flats using a multi-sensor and multi-temporal remote sensing approach. 34th EaRSEL Symposium, Warsaw, Poland, 16.-20.06.2014.Google Scholar
  23. Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y. Q., et al. (2009). Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 113(7), 1382–1396.CrossRefGoogle Scholar
  24. Kleeberg, U. (1990). Kartierung der Sedimentverteilung im Wattenmeer durch integrierte Auswertung von Satellitendaten und Daten der Wattenmeerdatenbank (WADABA) der GKSS. Thesis, Universität Trier, Trier.Google Scholar
  25. Kokke, J. M. M. (1995). Mapping of intertidal surface sediments using high resolution remote sensing (a study in the Westerscheldt area, the Netherlands). EARSeL Advances in Remote Sensing, 4(1), 35–44.Google Scholar
  26. Lee, K.-S., Park, S. R., & Kim, Y. K. (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology, 350, 144–175.CrossRefGoogle Scholar
  27. MLUR - Ministerium für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (2010). Bewirtschaftungsplan nach Artikel 13 der Richtlinie 2000/60/EG für die Flussgebietseinheit Eider. Kiel, 247 pp.Google Scholar
  28. Nehls, G., Witte, S., Büttger, H., Dankers, N., Jansen, J., Millat, G., et al. (2009). Beds of blue mussels and Pacific oysters. Thematic Report No. 11. In H. Marencic & J. de Vlas (Eds.), Quality Status Report 2009. Wadden Sea Ecosystem No. 25. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Wilhelmshaven, Germany.Google Scholar
  29. Pröber, C. (1981). Die Möglichkeiten der Fernerkundung in der Küstengeologie: eine Untersuchung am Beispiel der nordfriesischen Wattsedimente und der Schwebfracht in der Nordsee. Dissertation, Universität Kiel, Kiel.Google Scholar
  30. Rainey, M. P., Tyler, A. N., Bryant, R. G., Gilvear, D. J., & McDonald, P. (2000). The influence of surface and interstitial moisture on the spectral characteristics of intertidal sediments: implications for airborne image acquisition and processing. International Journal of Remote Sensing, 21(16), 3025–3038.CrossRefGoogle Scholar
  31. Rainey, M. P., Tyler, A. N., Gilvear, D. J., Bryant, R. G., & McDonald, P. (2003). Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing. Remote Sensing of Environment, 86(4), 480–490.CrossRefGoogle Scholar
  32. Smith, G. M., & Fuller, R. M. (2001). An integrated approach to land cover classification: an example in the island of Jersey. International Journal of Remote Sensing, 22(16), 3123–3142.Google Scholar
  33. Stelzer, K., & Brockmann, C. (2006). Optische Fernerkundung für die Küstenzone. In K. P. Traub & J. Kohlus (Eds.), GIS im Küstenzonen Management – Grundlagen und Anwendungen. Heidelberg.Google Scholar
  34. Stevens, J. P., Blackstock, T. H., Howe, E. A., & Stevens, D. P. (2004). Repeatability of phase 1 habitat survey. Journal of Environmental Management, 73(1), 53–59.CrossRefGoogle Scholar
  35. TMAG – Trilateral Monitoring and Assessment Group (2009). TMAP manual. The Trilateral Monitoring and Assessment Program (TMAP) Wilhelmshaven, http://www.waddensea-secretariat.org/monitoring-tmap/manual-guidelines.
  36. van der Graf, S., Jonker, I., Herlyn, M., Kohlus, J., Fogh Winter, H., Reise, K., et al. (2009). Seagrass. Thematic Report No. 12. In H. Marencic & J. de Vlas (Eds.), Quality Status Report 2009. Wa dden Sea Ecosystem No. 25. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Wilhelmshaven, Germany.Google Scholar
  37. van der Wal, D., & Herman, P. M. J. (2007). Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sensing of Environment, 111(1), 89–106.CrossRefGoogle Scholar
  38. Wang, Y., & Koopmanns, B. N. (1995). Monitoring tidal flat changes using ERS-1 SAR images and GIS in the western Wadden Sea area, the Netherlands. EARSeL Advances in Remote Sensing, 4(1), 45–52.Google Scholar
  39. Yates, M. G., Jones, A. R., McGrorty, S., & Goss-Custard, J. D. (1993). The use of satellite imagery to determine the distribution of intertidal surface sediments of the Wash, England. Estuarine, Coastal and Shelf Science, 36(4), 333–344.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gabriele Müller
    • 1
  • Kerstin Stelzer
    • 2
  • Susan Smollich
    • 2
  • Martin Gade
    • 3
  • Winny Adolph
    • 4
  • Sabrina Melchionna
    • 3
  • Linnea Kemme
    • 3
  • Jasmin Geißler
    • 1
  • Gerald Millat
    • 4
  • Hans-Christian Reimers
    • 5
  • Jörn Kohlus
    • 1
  • Kai Eskildsen
    • 1
  1. 1.Schleswig-Holstein Agency for Coastal Defence, National Park and Marine Conservation, National Park AuthorityTönningGermany
  2. 2.Brockmann Consult GmbHGeesthachtGermany
  3. 3.Institute of OceanographyUniversity of HamburgHamburgGermany
  4. 4.National Park Authority Wadden Sea of Lower SaxonyWilhelmshavenGermany
  5. 5.State Agency for Agriculture, Environment and Rural AreasFlintbekGermany

Personalised recommendations