Skip to main content
Log in

Fluxes of nutrients and trace metals across the sediment-water interface controlled by sediment-capping agents: bentonite and sand

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The effect of bentonite and sand, as natural capping agents, on the fluxes of nutrients and trace metals across the sediment-water interface was studied through sediment incubation, and the ecotoxicological impact was assessed by using Daphnia magna. Bentonite and sand were layered on the sediment at 15, 75, and 225 mg cm−2, and the concentration of cations, nutrients, and trace metals was measured. Sediment incubation showed that bentonite reduced the N flux but increased the P flux as a result of dissolution of non-crystalline P from bentonite, while sand slightly decreased the N fluxes but not the P flux. The concentration of Na increased in the overlying water with increasing application rates of bentonite, while that of Ca decreased. However, regardless of the rate of sand application, concentrations of all cation species remained unchanged. The concentration of As and Cr increased with bentonite application rate but decreased with sand. Both capping materials suppressed fluxes of Cd, Cu, Ni, and Zn compared to control, and the extent of suppression was different depending on the trace metal species and capping agents used. During sediment incubation, the survival rate of D. magna significantly decreased in bentonite suspension but began to decrease at the end in sand suspension. Sediment capping of mildly polluted sediments by using bentonite and sand lowered the level of nutrients and trace metals. However, unexpected or undesirable side effects, such as influxes of P and As from bentonite to the overlying water and a possibility of toxic impacts to aquatic ecosystems, were observed, suggesting that capping agents with an adequate assessment of their side effects and toxicity should be predetermined for site-specific sediment management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdou, M. I., Al-sabagh, A. M., & Dardir, M. M. (2013). Evaluation of Egyptian bentonite and nano-bentonite as drilling mud. Egyptian Journal of Petroleum, 22(1), 53–59. doi:10.1016/j.ejpe.2012.07.002.

    Article  Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822. doi:10.1016/S0043-1354(02)00392-5.

    Article  CAS  Google Scholar 

  • Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., & Beolchini, F. (2015). A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24–36. doi:10.1016/j.jclepro.2014.08.009.

    Article  CAS  Google Scholar 

  • Arega, F., & Hayter, E. (2008). Coupled consolidation and contaminant transport model for simulating migration of contaminants through the sediment and a cap. Applied Mathematical Modelling, 32(11), 2413–2428. doi:10.1016/j.apm.2007.09.024.

    Article  Google Scholar 

  • Aşçi, Y., Nurbaş, M., & Saǧ Açikel, Y. (2008). A comparative study for the sorption of Cd(II) by K-feldspar and sepiolite as soil components, and the recovery of Cd(II) using rhamnolipid biosurfactant. Journal of Environmental Management, 88(3), 383–392. doi:10.1016/j.jenvman.2007.03.006.

    Article  Google Scholar 

  • ASTM. (2005). Standard test method for measutring the toxicity of sediment-associated contaminants with freshwater invertebrates. EI706-05. ASTM Standards on Aquatic Toxicology and Hazard Evaluation. West Conshohocken: American Society for Testing and Materials

  • Baker, L. A. (1992). Introduction to nonpoint source pollution in the United States and prospects for wetland use. Ecological Engineering, 1(1–2), 1–26. doi:10.1016/0925-8574(92)90023-U.

    Article  Google Scholar 

  • Brechbühl, Y., & Christl, I. (2012). Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. Journal of colloid and …, 377, 313–321. doi:10.1016/j.jcis.2012.03.025.

    Article  Google Scholar 

  • Carabante, I., Grahn, M., Holmgren, A., & Hedlund, J. (2010). In situ ATR-FTIR studies on the competition adsorption of arsenate and phosphate on ferrihydrite. Journal of Colloid and Interface Science, 351, 523–531.

  • D’elia, C. F., Steudler, P. A., & Corwin, N. (1977). Determination of total nitrogen in aqueous samples using persulfate digestion. Limnology and Oceanography. doi:10.4319/lo.1977.22.4.0760.

    Google Scholar 

  • Downs, R., & Hall-Wallace, M. (2003). The American mineralogist crystal structure database. American Mineralogist, 88, 247–250.

    Article  CAS  Google Scholar 

  • Elzinga, E. J., Huang, J.-H., Chorover, J., & Kretzschmar, R. (2012). ATR-FTIR spectroscopy study of the influence of pH and contact time on the adhesion of Shewanella putrefaciens bacterial cells to the surface of hematite. Environmental Science & Technology, 46(23), 12848–12855. doi:10.1021/es303318y.

    Article  CAS  Google Scholar 

  • Fink, D. H., Nakayama, F. S., & McNeal, B. L. (1971). Demixing of exchangeable cations in free-swelling bentonite clay. Soil Science Society of America Procedings, 35, 552–555.

  • Gates, W. P., Bouazza, A., & Churchman, G. J. (2009). Bentonite clay keeps pollutants at bay. Elements, 5(2), 105–110. doi:10.2113/gselements.5.2.105.

    Article  CAS  Google Scholar 

  • Gimsing, A. L., & Borggaard, O. K. (2007). Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals. Clays and Clay Minerals, 55(1), 108–114. doi:10.1346/CCMN.2007.0550109.

    Article  CAS  Google Scholar 

  • Go, J., Lampert, D. J., Stegemann, J. A., & Reible, D. D. (2009). Predicting contaminant fate and transport in sediment caps: mathematical modelling approaches. Applied Geochemistry, 24(7), 1347–1353. doi:10.1016/j.apgeochem.2009.04.025.

    Article  CAS  Google Scholar 

  • Hanawalt, J. D., Rinn, H. W., & Frevel, L. K. (1938). Chemical analysis by X-ray diffraction. Industrial and Engineering Chemistry, Analytical Edition, 10(9), 457–512. doi:10.1021/ac50125a001.

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. doi:10.1023/A:1008119611481.

    Article  Google Scholar 

  • Helfferich, F. G. (1962). Ion exchange. New York: McGraw-Hill.

  • Hyun, S., Jafvert, C. T., Lee, L. S., & Rao, P. S. C. (2006). Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment. Chemosphere, 63(10), 1621–1631. doi:10.1016/j.chemosphere.2005.10.025.

    Article  CAS  Google Scholar 

  • Jia, Y., & Demopoulos, G. P. (2008). Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Water Research, 42(3), 661–668. doi:10.1016/j.watres.2007.08.017.

    Article  CAS  Google Scholar 

  • Keeney, D. R., & Nelson, D. W. (1982). Nitrogen in organic forms. In A. L. Page et al. (Eds.), Methods of soil analysis, part 2 (pp. 643–698). Madison: American Society of Agronomy and Soil Science Society of America.

  • Kiipli, T., Orlova, K., Kiipli, E., & Kallaste, T. (2008). Use of immobile trace elements for the correlation of Telychian bentonites on Saaremaa Island, Estonia, and mapping of volcanic ash clouds. Estonian Journal of Earth Sciences, 57(1), 39. doi:10.3176/earth.2008.1.04.

    Article  Google Scholar 

  • Kim, K. S., Park, M., Choi, C. L., Lee, D. H., Seo, Y. J., Kim, C. Y., et al. (2011). Suppression of NH3 and N2O emissions by massive urea intercalation in montmorillonite. Journal of Soils and Sediments, 11(3), 416–422. doi:10.1007/s11368-010-0326-z.

    Article  CAS  Google Scholar 

  • Kuo, S. (1996). Phosphorus. In D. L. Sparks et al. (Eds.), Mehtods of soil analysis, part 3 (pp. 869–919). Madison: American Society of Agronomy and Society of Soil Science of America.

  • Li, Y., Wang, X., & Wang, J. (2011). Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions. Journal of Thermal Analysis and Calorimetry, 110(3), 1199–1206. doi:10.1007/s10973-011-2109-1.

    Article  Google Scholar 

  • Lin, J., Zhan, Y., & Zhu, Z. (2011). Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release. The Science of the Total Environment, 409(3), 638–646. doi:10.1016/j.scitotenv.2010.10.031.

    Article  CAS  Google Scholar 

  • Lu, P., & Zhu, C. (2010). Arsenic eh–pH diagrams at 25 °C and 1 bar. Environmental Earth Sciences, 62(8), 1673–1683. doi:10.1007/s12665-010-0652-x.

    Article  Google Scholar 

  • Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A. S., & Richardson, J. W. (1997). Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics, 81(2), 594. doi:10.1063/1.364220.

    Article  CAS  Google Scholar 

  • Masue, Y., Loeppert, R. H., & Kramer, T. A. (2007). Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environmental Science and Technology, 41(3), 837–842.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

  • McKenzie, R. (1980). The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 18(1), 61. doi:10.1071/SR9800061.

    Article  CAS  Google Scholar 

  • Meis, S., Spears, B. M., Maberly, S. C., & Perkins, R. G. (2013). Assessing the mode of action of Phoslock® in the control of phosphorus release from the bed sediments in a shallow lake (loch Flemington, UK). Water Research, 47(13), 4460–4473. doi:10.1016/j.watres.2013.05.017.

    Article  CAS  Google Scholar 

  • Minh, N. H., Minh, T. B., Kajiwara, N., Kunisue, T., Iwata, H., Viet, P. H., et al. (2007). Pollution sources and occurrences of selected persistent organic pollutants (POPs) in sediments of the Mekong River delta, South Vietnam. Chemosphere, 67(9), 1794–1801. doi:10.1016/j.chemosphere.2006.05.144.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27(C), 31–36. doi:10.1016/S0003-2670(00)88444-5.

    Article  CAS  Google Scholar 

  • Paytan, A., & McLaughlin, K. (2007). The oceanic phosphorus cycle. Chemical Reviews, 107(2), 563–576. doi:10.1021/cr0503613.

    Article  CAS  Google Scholar 

  • Pellegrini, D. (1999). Characterisation of harbour and coastal sediments: specific destinations of dredged material. Aquatic Ecosystem Health and Management, 2(4), 455–464. doi:10.1016/S1463-4988(99)00044-5.

    Article  CAS  Google Scholar 

  • Peng, J.-F., Song, Y.-H., Yuan, P., Cui, X.-Y., & Qiu, G.-L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2–3), 633–640. doi:10.1016/j.jhazmat.2008.04.061.

    Article  CAS  Google Scholar 

  • Pils, J. R. V., Laird, D. A., & Evangelou, V. P. (2007). Role of cation demixing and quasicrystal formation and brekup on the stability of smectite colloids. Applied Clay Science, 35, 201–211.

  • Pinto, E., Sigaud-kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39(6), 1008–1018. doi:10.1111/j.0022-3646.2003.02-193.x.

    Article  CAS  Google Scholar 

  • van Reeuwijk, L. P. (1992). Procedures for soil analysis (third ed.). Wageningen, The Netherlands: International Soil Reference and Information Centre.

    Google Scholar 

  • Robinson, S. E., Capper, N. A., & Klaine, S. J. (2010). The effects of continuous and pulsed exposures of suspended clay on the survival, growth, and reproduction of Daphnia magna. Environmental Toxicology and Chemistry, 29(1), 168–175. doi:10.1002/etc.4.

    Article  CAS  Google Scholar 

  • Schaanning, M., Breyholtz, B., & Skei, J. (2006). Experimental results on effects of capping on fluxes of persistent organic pollutants (POPs) from historically contaminated sediments. Marine Chemistry, 102(1–2), 46–59. doi:10.1016/j.marchem.2005.10.027.

    Article  CAS  Google Scholar 

  • Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends in Ecology & Evolution, 24(4), 201–207. doi:10.1016/j.tree.2008.11.009.

    Article  Google Scholar 

  • Stachowicz, M., Hiemstra, T., & van Riemsdijk, W. H. (2008). Multi-competitive interaction of as(III) and as(V) oxyanions with Ca2+, Mg2+, PO3-4, and CO2-3 ions on goethite. Journal of Colloid and Interface Science, 320(2), 400–414. doi:10.1016/j.jcis.2008.01.007.

    Article  CAS  Google Scholar 

  • Tarabara, V. V., & Wiesner, M. R. (2005). Physical and transport properties of bentonite-cement composites: a new material for in situ capping of contaminated underwater sediments. Environmental Engineering Science, 22(5), 578–590. doi:10.1089/ees.2005.22.578.

    Article  CAS  Google Scholar 

  • Tombácz, E., & Szekeres, M. (2006). Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science, 34(1–4), 105–124. doi:10.1016/j.clay.2006.05.009.

    Article  Google Scholar 

  • Viana, P. Z., Yin, K., & Rockne, K. J. (2008). Modeling active capping efficacy. 1. Metal and Organometal contaminated sediment remediation. Environmental Science & Technology, 42(23), 8922–8929. doi:10.1021/es800942t.

    Article  CAS  Google Scholar 

  • Wang, S., Jin, X., Bu, Q., Jiao, L., & Wu, F. (2008). Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1–3), 245–252. doi:10.1016/j.colsurfa.2007.09.007.

    CAS  Google Scholar 

  • Zamparas, M., Deligiannakis, Y., & Zacharias, I. (2013). Phosphate adsorption from natural waters and evaluation of sediment capping using modified clays. Desalination and Water Treatment, 51(13–15), 2895–2902. doi:10.1080/19443994.2012.748139.

    Article  CAS  Google Scholar 

  • Zamparas, M., Drosos, M., Deligiannakis, Y., & Zacharias, I. (2014). Eutrophication control using a novel bentonite humic-acid composite material Bephos™. Journal of Environmental Chemical Engineering. doi:10.1016/j.jece.2014.12.013.

    Google Scholar 

  • Zhang, H., & Selim, H. M. (2008). Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Advances in Agronomy, 98, 45–115.

  • Zoumis, T., Schmidt, A., Grigorova, L., & Calmano, W. (2001). Contaminants in sediments: remobilisation and demobilisation. The Science of the Total Environment, 266(1–3), 195–202. doi:10.1016/S0048-9697(00)00740-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported not only by the Basic Science Research Program (NRF-2014R1A1A2059196) and Global Ph.D. Fellowship Program (NRF-2015H1A2A1034068) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education of the Republic of Korea, but also by the Brain Korea 21 Plus Program funded by the Ministry of Education of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Myong Ro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Ro, HM., Cho, K.H. et al. Fluxes of nutrients and trace metals across the sediment-water interface controlled by sediment-capping agents: bentonite and sand. Environ Monit Assess 188, 566 (2016). https://doi.org/10.1007/s10661-016-5583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5583-x

Keywords

Navigation