Ozone levels in the Spanish Sierra de Guadarrama mountain range are above the thresholds for plant protection: analysis at 2262, 1850, and 995 m a.s.l.

  • S. Elvira
  • I. González-Fernández
  • R. Alonso
  • J. Sanz
  • V. Bermejo-Bermejo
Article

Abstract

The Sierra de Guadarrama mountain range, located at 60 km from Madrid City (Spain), includes high valuable ecosystems following an altitude gradient, some of them protected under the Sierra de Guadarrama National Park. The characteristic Mediterranean climatic conditions and the precursors emitted from Madrid favor a high photochemical production of ozone (O3) in the region. However, very little information is available about the patterns and levels of O3 and other air pollutants in the high elevation areas and their potential effects on vegetation. Ozone levels were monitored at three altitudes (2262, 1850, and 995 m a.s.l.) for at least 3 years within the 2005–2011 period. NOx and SO2 were also recorded at the highest and lowest altitude sites. Despite the inter-annual and seasonal variations detected in the O3 concentrations, the study revealed that SG is exposed to a chronic O3 pollution. The two high elevation sites showed high O3 levels even in winter and at nighttime, having low correlation with local meteorological variables. At the lower elevation site, O3 levels were more related with local meteorological and pollution conditions. Ozone concentrations at the three sites exceeded the thresholds for the protection of human health and vegetation according to the European Air Quality Directive (EU/50/2008) and the thresholds for vegetation protection of the CLRTAP. Ozone should be considered as a stress factor for the health of the Sierra de Guadarrama mountain ecosystems. Furthermore, since O3 levels at foothills differ from concentration in high elevation, monitoring stations in mountain ranges should be incorporated in regional air quality monitoring networks.

Keywords

Ozone critical levels Ozone risk assessment Mediterranean mountain range Surface ozone Iberian peninsula Sierra de Guadarrama Mountains National Park 

References

  1. Adame, J. A., Sole, J. G. (2013). Surface ozone variations at a rural area in the northeast of the Iberian Peninsula. Atmospheric Pollution Research, 4(2).Google Scholar
  2. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661.CrossRefGoogle Scholar
  3. Alonso R, Bytnerowicz A. (2003) Monitoring and modeling of ozone status and effects in the Sierra Nevada: a comparison with studies in North America and Europe. In: Ozone air pollution in the Sierra Nevada. Distribution and effects on forests. Bytnerowicz A, Arbaugh M, Alonso R., editors. Elsevier Science Ltd., pp 371–389.Google Scholar
  4. Alonso, R., Elvira, S., Castillo, F. J., & Gimeno, B. S. (2001). Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment, 24(9), 905–916.CrossRefGoogle Scholar
  5. Alonso, R. Bermejo, V., Elvira, S., Alfaro, A. A., Sanz, J., Garraleta M.H.D., González I. Fernández R., Gimeno, B.S. (2009) La contaminación atmosférica en la Sierra de Guadarrama. In: Sextas Jornadas Científicas del Parque Natural de Peñalara y del Valle de El Paular. Comunidad de Madrid, pp.63–85. Google Scholar
  6. Alonso, R., Elvira, S., González-Fernández, I., Calvete, H., García-Gómez, H., & Bermejo, V. (2014). Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity. Plant Biology, 16(2), 375–384.CrossRefGoogle Scholar
  7. Augustaitis, A., & Bytnerowicz, A. (2008). Contribution of ambient ozone to scots pine defoliation and reduced growth in the central European forests: a Lithuanian case study. Environmental Pollution, 155(3), 436–445.CrossRefGoogle Scholar
  8. Balzani, L., Henne, J. S., Legreid, G., Staehelin, J., Reimann, S., Prévôt, A. S. H., Steinbacher, M., & Vollmer, M. (2008). Estimation of background concentrations of trace gases at the Swiss alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research, 113, D22305. doi:10.1029/2007JD009751.CrossRefGoogle Scholar
  9. Bermejo, V., Gimeno, B. S., Sanz, J., De la Torre, D., & Gil, J. M. (2003). Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury. Atmospheric Environment, 37(33), 4667–4677.CrossRefGoogle Scholar
  10. Bonasoni, P., Stohl, A., Cristofanelli, P., Calzolari, F., Colombo, T., & Evangelisti, F. (2000). Background ozone variations at Mt. Cimone station. Atmospheric Environment, 34(29), 5183–5189.CrossRefGoogle Scholar
  11. Brodin, M., Helmig, D., & Oltmans, S. (2010). Seasonal ozone behavior along an elevation gradient in the Colorado front Range Mountains. Atmospheric Environment, 44(39), 5305–5315.CrossRefGoogle Scholar
  12. Büker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., Braun, S., & Emberson, L. D. (2015). New flux based dose–response relationships for ozone for European forest tree species. Environmental Pollution, 206, 163–174.CrossRefGoogle Scholar
  13. Burley, J. D., & Bytnerowicz, A. (2011). Surface ozone in the White Mountains of California. Atmospheric Environment, 45(27), 4591–4602.CrossRefGoogle Scholar
  14. Calatayud, V., Cerveró, J., Calvo, E., García-Breijo, F. J., Reig-Armiñana, J., & Sanz, M. J. (2011). Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environmental Pollution, 159(1), 55–63.CrossRefGoogle Scholar
  15. Calvete-Sogo, H., Elvira, S., Sanz, J., González-Fernández, I., García-Gómez, H., Sánchez-Martín, L., & Bermejo-Bermejo, V. (2014). Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmospheric Environment, 95, 197–206.CrossRefGoogle Scholar
  16. Chevalier, F., Gheusi, R., Delmas, C., Ordóñez, C., & Sarrat, R. Z. (2007). Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmospheric Chemistry and Physics, 7, 4311–4326.CrossRefGoogle Scholar
  17. CLRTAP (2011) Mapping critical levels for vegetation. In: UNECE Convention on Long-range Transboundary Air Pollution (ed) Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. Available at: www.icpmapping.org.
  18. Cristofanelli, P., & Bonasoni, P. (2009). Background ozone in the southern Europe and Mediterranean area: influence of the transport processes. Environmental Pollution, 157(5), 1399–1406.CrossRefGoogle Scholar
  19. Cristofanelli, P., Scheel, H. E., Steinbacher, M., Saliba, M., Azzopardi, F., Ellul, R., & Bonasoni, P. (2015). Long-term surface ozone variability at Mt. Cimone WMO/GAW global station (2165 m asl, Italy). Atmospheric Environment, 101, 23–33.CrossRefGoogle Scholar
  20. Dalstein, L., & Vas, N. (2005). Ozone concentrations and ozone-induced symptoms on coastal and alpine Mediterranean pines in southern France. Water, Air, and Soil Pollution, 160(1–4), 181–195.CrossRefGoogle Scholar
  21. De Andrés, J. M., Borge, R., de la Paz, D., Lumbreras, J., & Rodríguez, E. (2012). Implementation of a module for risk of ozone impacts assessment to vegetation in the integrated assessment modelling system for the Iberian peninsula. Evaluation for wheat and holm oak. Environmental Pollution, 165, 25–37.CrossRefGoogle Scholar
  22. Di Carlo, P., Aruffo, E., Biancofiore, F., Busilacchio, M., Pitari, G., Dari-Salisburgo, C., & Kajii, Y. (2015). Wildfires impact on surface nitrogen oxides and ozone in Central Italy. Atmospheric Pollution Research, 6(1).Google Scholar
  23. Díaz-de-Quijano, M., Peñuelas, J., & Ribas, A. (2009). Increasing interannual and altitudinal ozone mixing ratios in the Catalan Pyrenees. Atmospheric Environment, 43(38), 6049–6057.CrossRefGoogle Scholar
  24. Elvira, S., Alonso, R., Castillo, F. J., & Gimeno, B. S. (1998). On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytologist, 419–432.Google Scholar
  25. Elvira, S. Gutiérrez, A., Bermejo, V., Gavilán, R.G., González, I., Alonso, R. (2011) Ozone levels and potential risk of injury on the sub-alpine grasslands of the Guadarrama mountains. 12th European Ecological Federation Congress “Responding to rapid environmental changes”, S36, 46.Google Scholar
  26. European Environment Agency (EEA), (2014) Emissions of ozone precursors (CSI 002/APE 008). Google Scholar
  27. Fernández-Fernández, M. I., Gallego, M. C., García, J. A., & Acero, F. J. (2011). A study of surface ozone variability over the Iberian peninsula during the last fifty years. Atmospheric Environment, 45(11), 1946–1959.CrossRefGoogle Scholar
  28. Finlayson-Pitts, B. J., & Pitts Jr., N. (1997). Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276(5315), 1045–1051.CrossRefGoogle Scholar
  29. Foot, J. P., Caporn, S. J. M., Lee, J. A., & Ashenden, T. W. (1997). Evidence that ozone exposure increases the susceptibility of plants to natural frosting episodes. New Phytologist, 135(2), 369–374.CrossRefGoogle Scholar
  30. Gimeno, B. S., Bermejo, V., Sanz, J., De la Torre, D., & Gil, J. M. (2004). Assessment of the effects of ozone exposure and plant competition on the reproductive ability of three therophytic clover species from Iberian pastures. Atmospheric Environment, 38(15), 2295–2303.CrossRefGoogle Scholar
  31. González, L., Bermejo, R., Parra, M. A., Elustondo, D., Garrigó, J., & Santamaría, J. M. (2010). Rural O3 levels in the middle Ebro Basin during the plant growing season. Water, Air, and Soil Pollution, 206(1–4), 23–34.CrossRefGoogle Scholar
  32. Grulke, N. E., Minnich, R. A., Paine, T. D., Seybold, S. J., Chavez, D. J., Fenn, M. E., & Dunn, A. (2008). Air pollution increases forest susceptibility to wildfires: a case study in the San Bernardino Mountains in southern California. Developments in Environmental Science, 8, 365–403.CrossRefGoogle Scholar
  33. Gutiérrez-Girón, A., & Gavilán, R. (2013). Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in Central Spain. Plant Ecology & Diversity, 6(3–4), 435–446.CrossRefGoogle Scholar
  34. Heath, R. L. (2008). Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environmental Pollution, 155(3), 453–463.CrossRefGoogle Scholar
  35. Huttunen, S., & Manninen, S. (2013). A review of ozone responses in scots pine (Pinus sylvestris). Environmental and Experimental Botany, 90, 17–31.CrossRefGoogle Scholar
  36. IPCC (2007) Climate change 2007: working group II: impacts, adaptation and vulnerability Google Scholar
  37. Karlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B. S., Le Thiec, Oksanen, E., Vandermeiren, K., Wilkinson, M., & Emberson, L. (2004). New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmospheric Environment, 38(15), 2283–2294.CrossRefGoogle Scholar
  38. Körner, C. (2003). Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. Springer Science & Business Media.Google Scholar
  39. Kulkarni, P. S., Bortoli, D., Salgado, R., Antón, M., Costa, M. J., & Silva, A. M. (2011). Tropospheric ozone variability over the Iberian peninsula. Atmospheric Environment, 45(1), 174–182.CrossRefGoogle Scholar
  40. MAGRAMA (2012). (MINISTERIO DE AGRICULTURA, PESCA Y MEDIO AMBIENTE, GOBIERNO DE ESPAÑA). Los Incendios Forestales en España. Decenio 2001–2010, Madrid. http://www.magrama.gob.es/es/biodiversidad/estadisticas/incendios_forestales_espa%C3%B1a_decenio_2001_2010_tcm7-235361.pdf
  41. Martins, V., Miranda, A. I., Carvalho, A., Schaap, M., Borrego, C., & Sa, E. (2012). Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal. Science of the Total Environment, 414, 53–62.CrossRefGoogle Scholar
  42. McLaughlin, S. B., Nosal, M., Wullschleger, S. D., & Sun, G. (2007). Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA. New Phytologist, 174(1), 109–124.CrossRefGoogle Scholar
  43. Mechergui, R., Mansoura, A. B., Laffray, X., Albouchi, A., Akrimi, N., & Garrec, J. P. (2009). Ozone level assessment on the Boukornine National Park (Tunisia) using plant biomonitoring: influence of altitudinal parameter and meteorological conditions. Water, Air, and Soil Pollution, 204(1–4), 285–297.CrossRefGoogle Scholar
  44. Meleux, F., Solmon, F., & Giorgi, F. (2007). Increase in summer European ozone amounts due to climate change. Atmospheric Environment, 41(35), 7577–7587.CrossRefGoogle Scholar
  45. Millán, M. M., Mantilla, E., Salvador, R., Carratalá, A., Sanz, M. J., Alonso, L., & Navazo, M. (2000). Ozone cycles in the western Mediterranean basin: interpretation of monitoring data in complex coastal terrain. Journal of Applied Meteorology, 39(4), 487–508.CrossRefGoogle Scholar
  46. Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., & Simpson, D. (2011). New stomatal flux-based critical levels for ozone effects on vegetation. Atmospheric Environment, 45(28), 5064–5068.CrossRefGoogle Scholar
  47. Monteiro, A., Strunk, A., Carvalho, A., Tchepel, O., Miranda, A. I., Borrego, C., & Elbern, H. (2012). Investigating a high ozone episode in a rural mountain site. Environmental Pollution, 162, 176–189.CrossRefGoogle Scholar
  48. Musselman, R. C., & Minnick, T. J. (2000). Nocturnal stomatal conductance and ambient air quality standards for ozone. Atmospheric Environment, 34(5), 719–733.CrossRefGoogle Scholar
  49. Notario, A., Díaz-de-Mera, Y., Aranda, A., Adame, J. A., Parra, A., Romero, E., & Muñoz, F. (2012). Surface ozone comparison conducted in two rural areas in Central-Southern Spain. Environmental Science and Pollution Research, 19(1), 186–200.CrossRefGoogle Scholar
  50. Novak, K., Schaub, M., Fuhrer, J., Skelly, J. M., Frey, B., & Kräuchi, N. (2008). Ozone effects on visible foliar injury and growth of Fagus sylvatica and Viburnum lantana seedlings grown in monoculture or in mixture. Environmental and Experimental Botany, 62(3), 212–220.CrossRefGoogle Scholar
  51. Oltmans, S. J., Lefohn, A. S., Harris, J. M., Galbally, I., Scheel, H. E., Bodeker, G., Brunke, E., Claude, H., Tarasick, D., Johnson, B. J., Simmonds, P., Shadwick, D., Anlauf, K., Hayden, K., Schmidlin, F., Fujimoto, T., Akagi, K., Meyer, C., Nichol, S., Davies, J., Redondas, A., & Cuevas, E. (2006). Long-term changes in tropospheric ozone. Atmospheric Environment, 40, 3156–3173. doi:10.1016/j.atmosenv.2006.01.029.CrossRefGoogle Scholar
  52. Ordóñez, C., Mathis, H., Furger, M., Henne, S., Hüglin, C., Staehelin, J., & Prévôt, A. S. H. (2005). Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics, 5(5), 1187–1203.CrossRefGoogle Scholar
  53. Palacios, M., Martin, F., & Aceña, B. (2005). Estimate of potentially high ozone concentration areas in the Centre of the Iberian peninsula. International Journal of Environment and Pollution, 24(1–4), 260–271.CrossRefGoogle Scholar
  54. Pandey Deolal, S., Brunner, D., Steinbacher, M., Weers, U., & Staehelin, J. (2012). Long-term in situ measurements of NO x and NO y at Jungfraujoch 1998–2009: time series analysis and evaluation. Atmospheric Chemistry and Physics, 12(5), 2551–2566.CrossRefGoogle Scholar
  55. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., & Grabherr, G. (2012). Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079), 353–355.CrossRefGoogle Scholar
  56. Plaza, J., Pujadas, M., & Artiñano, B. (1997). Formation and transport of the Madrid ozone plume. Journal of the Air & Waste Manage Association, 47, 766–774.CrossRefGoogle Scholar
  57. Pujadas, M., Plaza, J., Teres, J., Artınano, B., & Millán, M. (2000). Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the Madrid urban plume, a case of study. Atmospheric Environment, 34(19), 3041–3056.CrossRefGoogle Scholar
  58. Querol, X., Alastuey, A., Pandolfi, M., Reche, C., Pérez, N., Minguillon, M. C., & Reina, F. (2014). 2001–2012 Trends on air quality in Spain. Science of the Total Environment, 490, 957–969.CrossRefGoogle Scholar
  59. Ribas, À., & Peñuelas, J. (2004). Temporal patterns of surface ozone levels in different habitats of the north western Mediterranean basin. Atmospheric Environment, 38(7), 985–992.CrossRefGoogle Scholar
  60. Ribas, A., & Peñuelas, J. (2006). Surface ozone mixing ratio increase with altitude in a transect in the Catalan Pyrenees. Atmospheric Environment, 40(38), 7308–7315.Google Scholar
  61. Rivas-Martínez, S., Gandullo, J. M., Serrada, R., Allué, J. L., Montero, J. L., & González, J. L.. (1987). Mapa de series de vegetación de España y memoria. Publicaciones del Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  62. Saavedra, S., Rodríguez, A., Taboada, J. J., Souto, J. A., & Casares, J. J. (2012). Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia. Science of the Total Environment, 441, 97–110.CrossRefGoogle Scholar
  63. Sánchez, M. L., De Torre, B., García, M. A., & Pérez, I. (2005). Ozone concentrations at a high altitude station in the central massif (Spain). Chemosphere, 60(4), 576–584.CrossRefGoogle Scholar
  64. Santurtún, A., González-Hidalgo, J. C., Sanchez-Lorenzo, A., & Zarrabeitia, M. T. (2015). Surface ozone concentration trends and its relationship with weather types in Spain (2001–2010). Atmospheric Environment, 101, 10–22.CrossRefGoogle Scholar
  65. Sanz, M. J., Sanz, F., & Sánchez-Peña, G. (2001). Spatial and annual temporal distribution of ozone concentrations in the Madrid basin using passive samplers. The Scientific World Journal, 1, 785–795.CrossRefGoogle Scholar
  66. Sanz, J., Bermejo, V., Gimeno, B. S., Elvira, S., & Alonso, R. (2007a). Ozone sensitivity of the Mediterranean terophyte Trifolium striatum is modulated by soil nitrogen content. Atmospheric Environment, 41(39), 8952–8962.CrossRefGoogle Scholar
  67. Sanz, M. J., Sanz, F., Calatayud, V., & Sánchez-Peña, G. (2007b). Ozone in Spain’s national parks and protected forests. The Scientific World Journal, 7, 67–77.CrossRefGoogle Scholar
  68. Sanz, J., González-Fernández, I., Calvete-Sogo, H., Lin, J. S., Alonso, R., Muntifering, R., & Bermejo, V. (2014). Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri. Atmospheric Environment, 94, 765–772.CrossRefGoogle Scholar
  69. Sanz, J., González-Fernández, I., Elvira, S., Muntifering, R., Alonso, R., Bermejo-Bermejo, V. (2016). Setting ozone critical levels for annual Mediterranean pasture species: combined analysis of open-top chamber. Science of the Total Environment, in press.Google Scholar
  70. Sicard, P., Coddeville, P., & Galloo, J. C. (2009). Near-surface ozone levels and trends at rural stations in France over the 1995–2003 period. Environmental Monitoring and Assessment, 156(1–4), 141–157.CrossRefGoogle Scholar
  71. Sicard, P., Dalstein-Richier, L., & Vas, N. (2011). Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-Eastern France) over the 2000–2008 period. Environmental Pollution, 159(2), 351–362.CrossRefGoogle Scholar
  72. Sicard, P., De Marco, A., Troussier, F., Renou, C., Vas, N., & Paoletti, E. (2013). Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 79, 705–715.CrossRefGoogle Scholar
  73. Skärby, L., Troeng, E., & Boström, C. Å. (1987). Notes: ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in scots pine. Forest Science, 33(3), 801–808.Google Scholar
  74. Villanueva, F., Tapia, A., Notario, A., Albaladejo, J., & Martínez, E. (2014). Ambient levels and temporal trends of VOCs, including carbonyl compounds, and ozone at Cabañeros National Park border, Spain. Atmospheric Environment, 85, 256–265.CrossRefGoogle Scholar
  75. Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442.CrossRefGoogle Scholar
  76. Vollenweider, P., Ottiger, M., & Günthardt-Goerg, M. S. (2003). Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environmental Pollution, 124(1), 101–118.CrossRefGoogle Scholar
  77. Weinstein, D. A., Beloin, R. M., & Yanai, R. D. (1991). Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiology, 9(1–2), 127–146.CrossRefGoogle Scholar
  78. Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., & Long, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15(2), 396–424.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • S. Elvira
    • 1
  • I. González-Fernández
    • 1
  • R. Alonso
    • 1
  • J. Sanz
    • 1
  • V. Bermejo-Bermejo
    • 1
  1. 1.Ecotoxicology of Air PollutionCIEMATMadridSpain

Personalised recommendations