Skip to main content
Log in

vanA-targeted oligonucleotide DNA probe designed to monitor vancomycin- and teicoplanin-resistant bacteria in surface waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The glycopeptide antibiotics teicoplanin and vancomycin are common to treat severe Gram-positive bacterial infections. The gene vanA confers high-level resistance to these antibiotics, and these phenomena have been shown to be transferable. Release of vancomycin- and teicoplanin-resistant bacteria to surface waters is, therefore, of particular concern since they might proliferate and spread in different environments. Monitoring of the fate of vanA gene in these waters provides information on the exposure and potential threats of those bacteria for the environment and public health. Therefore, this study aimed at preparing a 25-mer-oligonucleotide DNA probe based on the 909 bp BamHI-ClaI fragment from Enterococcus faecium plasmids pVEF1 and pVEF2 through the use of Vector NTI Express Software. The newly designed vanA probe displayed highly specific hybridization with vanA-positive Enterococcus faecalis tested at 46 °C, 55 % formamide, and 0.020 M NaCl stringency conditions. In situ fluorescein hybridizations under the same stringency conditions were also used to monitor river water samples by using fluorescein microscopy. The results showed that the vanA-targeted oligonucleotide DNA probe prepared was not only highly specific but also quantitative tool for monitoring vancomycin- and teicoplanin-resistant bacteria in surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann, R., Fuchs, B. M., & Behrens, S. (2001). The identification of microorganisms by fluorescence in situ hybridisation. Current Opinion in Biotechnology, 12, 231–236.

    Article  CAS  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59, 143–169.

    CAS  Google Scholar 

  • Arthur, M., Molinas, C., Depardieu, F., & Courvalin, P. (1993). Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. Journal of Bacteriology, 175, 117–127.

    CAS  Google Scholar 

  • Arthur, M., Reynolds, P., & Courvalin, P. (1996). Glycopeptide resistance in enterococci. Trends in Microbiology, 4, 401–407.

    Article  CAS  Google Scholar 

  • Benson, D. A., & Karsch-Mizrachi, I. (2000). GenBank. Nucleic Acids Research, 28, 15–18.

    Article  CAS  Google Scholar 

  • Courvalin, P. (2006). Vancomycin resistance in gram-positive cocci. Clinical Infectious Diseases, 42, 25–34.

    Article  Google Scholar 

  • Daims, H., Brühl, A., Amann, R., Schleifer, K. H., & Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology, 22, 434–444.

    Article  CAS  Google Scholar 

  • Daims, H., Stoecker, K., & Wagner, M. (2005). Fluorescence in situ hybridization for the detection of prokaryotes. In A. M. Osborn & C. J. Smith (Eds.), Advanced methods in molecular microbial ecology (pp. 213–239). Abingdon, UK: Bios-Garland.

    Google Scholar 

  • Daria, M., Maren, W., Mashal, A., Martin, Z., Andrea, V., Michael, Z., & Hilke, W. (2010). Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. International Journal of Greenhouse Gas Control, 4, 981–989.

    Article  Google Scholar 

  • Eilers, H., Pernthaler, J., Glöckner, F. O., & Amann, R. (2000). Culturability and in situ abundance of pelagic bacteria from the North Sea. Applied and Environmental Microbiology, 66, 3044–3051.

    Article  CAS  Google Scholar 

  • Findlay, S. E. G., Sinsabaugh, R. L., Sobczak, W. V., & Hoostal, M. (2003). Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography, 48, 1608–1617.

    Article  CAS  Google Scholar 

  • Glöckner, F. O., Amann, R., Alfreider, A., Pemthaler, J., Psewner, R., Trebesius, K., & Schleifer, K. H. (1996). An in situ hybridization protocol for detection and identification of planktonic bacteria. Systematic and Applied Microbiology, 19, 403–406.

    Article  Google Scholar 

  • Glöckner, F. O., Zaichikov, E., Belkova, N., Denissowa, L., Pernthaler, J., Pernthaler, A., & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology, 66, 5053–5065.

    Article  Google Scholar 

  • Handwerger, S., & Skoble, J. (1995). Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 39, 2446–2453.

    Article  CAS  Google Scholar 

  • Icgen, B., & Yilmaz, F. (2016). Design a cadA-targeted DNA probe for screening of potential bacterial cadmium biosorbents. Environmental Science and Pollution Research, 23, 5743–5752.

    Article  CAS  Google Scholar 

  • Kalmbach, S., Manz, W., & Szewzyk, U. (1997). Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Applied and Environmental Microbiology, 63, 4164–4170.

    CAS  Google Scholar 

  • Kenzaka, T., Yamaguchi, N., Tani, K., & Nasu, M. (1998). rRNA-targeted fluorescent in situ hybridization analysis of bacterial community structure in river water. Microbiology, 144, 2085–2093.

    Article  CAS  Google Scholar 

  • Klammer, S., Posh, T., Sonntag, B., Griebler, C., Mindl, B., & Psenner, R. (2002). Dynamics of bacterial abundance, biomass, activity, and community composition in the oligotrophic Traunsee and the Traun River Austria. Water, Air and Soil Pollution, 2, 137–163.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2004). Resistance in the environment. Journal of Antimicrobial Chemotherapy, 54, 311–320.

    Article  Google Scholar 

  • Levsky, J. M., & Singer, R. H. (2003). Fluorescence in situ hybridization: past, present and future. Journal of Cell Science, 116, 2833–2838.

    Article  CAS  Google Scholar 

  • Li, B., Irvin, S., & Baker, B. (2007). The variation of nitrifying bacterial population sizes in a sequencing batch reactor (SBR) treating low, mid, high concentrated synthetic wastewater. Journal of Environmental Engineering and Science, 6, 651–663.

    Article  CAS  Google Scholar 

  • Loy, A., Horn, M., & Wagner, M. (2003). ProbeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Research, 31, 514–516.

    Article  CAS  Google Scholar 

  • Murray, B. E., & Nannini, E. C. (2009). Glycopeptides (vancomycin and teicoplanin), streptogramins (quinupristin-dalfopristin), and lipopeptides (daptomycin). In G. L. Mandell, J. E. Bennett, & R. Dolin (Eds.), Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (7th ed., pp. 449–465). Philadelphia, PA: Elsevier Churchill Livingston.

    Google Scholar 

  • Nielsen, P., Daims, H., & Lemmer, H. (2009). FISH handbook for biological wastewater treatment: identification and quantification of microorganisms in activated sludge and biofilms by FISH, London. New York: IWA Publishing.

    Google Scholar 

  • Pernthaler, J., Alfreider, A., Posch, T., Andreatta, S., & Psenner, R. (1997). In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria). Applied and Environmental Microbiology, 63, 4778–4783.

    CAS  Google Scholar 

  • Pernthaler, J., Glöckner, F. O., Unterholzner, S., Alfreider, A., Psenner, R., & Amann, R. (1998). Seasonal community and population dynamics of pelagic bacteria and Archaea in a high mountain lake. Applied and Environmental Microbiology, 64, 4299–4306.

    CAS  Google Scholar 

  • Pinhassi, J., & Hagström, A. (2000). Seasonal succession in marine bacterioplankton. Aquatic Microbial Ecology, 21, 245–256.

    Article  Google Scholar 

  • Rice, L. B. (2001). Emergence of vancomycin-resistant enterococci. Emerging Infectious Diseases, 7, 183–187.

    Article  CAS  Google Scholar 

  • Sletvold, H., Johnsen, P. J., Simonsen, G. S., Aasnaes, B., Sundsfjord, A., & Nielsen, K. M. (2007). Comparative DNA analysis of two vanA plasmids from Enterococcus faecium strains isolated from poultry and a poultry farmer in Norway. Antimicrobial Agents and Chemotherapy, 51, 736–739.

    Article  CAS  Google Scholar 

  • Sletvold, H., Johnsen, P. J., Wikmark, O. G., Simonsen, G. S., Sundsfjord, A., & Nielsen, K. M. (2010). Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. Journal of Antimicrobial Chemotherapy, 65, 1894–1906.

    Article  CAS  Google Scholar 

  • Vergis, E. N., Hayden, M. K., Chow, J. W., Snydman, D. R., Zervos, M. J., Linden, P. K., Wagener, M. M., Schmitt, B., & Muder, R. R. (2001). Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. A prospective multicenter study. Annals of Internal Medicine, 135, 484–492.

    Article  CAS  Google Scholar 

  • Volpi, E. V., & Bridger, J. M. (2008). FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques, 45, 385–409.

    Article  CAS  Google Scholar 

  • Wagner, M., Amann, R., Lemmer, H., & Schleifer, K. H. (1993). Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and Environmental Microbiology, 59, 1520–1525.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support given by TUBITAK-Turkey through the project 114Z973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Icgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakipoglu, M., Yilmaz, F. & Icgen, B. vanA-targeted oligonucleotide DNA probe designed to monitor vancomycin- and teicoplanin-resistant bacteria in surface waters. Environ Monit Assess 188, 569 (2016). https://doi.org/10.1007/s10661-016-5578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5578-7

Keywords

Navigation