Skip to main content

Advertisement

Log in

Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya—a case study from Khangchendzonga Biosphere Reserve, Sikkim, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Forests in the mountains are a treasure trove; harbour a large biodiversity; and provide fodder, firewood, timber and non-timber forest products; all of these are essential for human survival in the highest mountains on earth. The present paper attempts a spatiotemporal assessment of forest fragmentation and changes in land use land cover (LULC) pattern using multitemporal satellite data over a time span of around a decade (2000–2009), within the third highest protected area (PA) in the world. The fragmentation analysis using Landscape Fragmentation Tool (LFT) depicts a decrease in large core, edge and patches areas by 5.93, 3.64 and 0.66 %, respectively, while an increase in non-forest and perforated areas by 6.59 and 4.01 %, respectively. The land cover dynamics shows a decrease in open forest, alpine scrub, alpine meadows, snow and hill shadow areas by 2.81, 0.39, 8.18, 3.46 and 0.60 %, respectively, and there is an increase in dense forest and glacier area by 4.79 and 10.65 %, respectively. The change analysis shows a major transformation in areas from open forest to dense forest and from alpine meadows to alpine scrub. In order to quantify changes induced by forest fragmentation and to characterize composition and configuration of LULC mosaics, fragmentation indices were computed using Fragstats at class level, showing the signs of accelerated fragmentation. The outcome of the analysis revealed the effectiveness of geospatial tools coupled with landscape ecology in characterization and quantification of forest fragmentation and land cover changes. The present study provides a baseline database for sustainable conservation planning that will benefit the subsistence livelihoods in the region. Recommendations made based on the present analysis will help to recover forest and halt the pessimistic effects of fragmentation and land cover changes on biodiversity and ecosystem services in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari, T. L. (2001). Landslide control and stabilization measures for mountain roads: a case study of the Arniko Highway Central Nepal. In L. Tinachi, S. R. Chalise, & B. N. Upreti (Eds.), Landslide hazard mitigation in the Hindu Kush-Himalayas (pp. 263–289). Katmandu, Nepal: International Center for Integrated Mountain Development.

    Google Scholar 

  • Altamirano, A., & Lara, A. (2010). Deforestation in temperate ecosystems of pre-Andean range of south-Central Chile. Bosque, 31, 53–64.

    Article  Google Scholar 

  • Anderson, R., Hardy, E.E., Roach, J.T., & Witmer, R.E. (1976). A land use and land cover classification system for use with Remote Sensor data. USGS Professional Paper 964. Washington, DC.

  • Anonymous (2000a). Botanical Survey of India-Director’s Report (ed.), Ministry of Environment, Forests, and Climate Change, Government of India. p. 1–51.

  • Anonymous (2000b). Sikkim soils prepared and published by National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, Regional Centre, Calcutta, in cooperation with Department of Agriculture, Department of Forest, Government of Sikkim.

  • Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113, 245–256.

    Article  Google Scholar 

  • Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P., Mueller, A., Komor, P., Tol, S., & Yumkella, K. (2011). Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy, 39(12), 7896–7906.

    Article  Google Scholar 

  • Becker, A., & Bugmann, H. (1999). Global change and mountain regions. The mountain research initiative. IGBP Report, 49.

  • Bennett, A.F. (2003). Linkages in the landscape. The role of corridors and connectivity in wildlife conservation. IUCN Forest Conservation Programme, Conserving Forest Ecosystem Series No. 1 (http://www.iucn.org/themes/fcp/publications/files/linkages_in_the_landscape.pdf). Accessed 15 Dec 2015.

  • Bernbaum, E. (1996). Sacred mountains: implication for protected area management. Parks, 6(1), 41–48.

    Google Scholar 

  • Berry, L. (2001). Edge effects on the distribution and abundance of birds in a southern Victorian forest. Wildlife Research, 28, 239–245.

    Article  Google Scholar 

  • Broadbent, N. E., Gregory, P., & Asner Keller, M. (2008). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation, 132, 145–157.

    Google Scholar 

  • Cabral, A. I. R., Vasconcelos, M. J., Oom, D., & Sardinha, R. (2010). Spatial dynamics and quantification of deforestation in the central-plateau woodlands of Angola (1990-2009). Applied Geography, 31, 1185–1193.

    Article  Google Scholar 

  • Cagnolo, L., Cabido, M., & Valladares, G. (2006). Plant species richness in the Chaco Serrano woodland from central Argentina: ecological traits and habitat fragmentation effects. Biological Conservation, 132, 510–519.

    Article  Google Scholar 

  • Cain, D. H., Riitters, K., & Orvis, K. (1997). A multi-scale analysis of landscape statistics. Landscape Ecology, 12, 199–212.

    Article  Google Scholar 

  • Cayuela, L., Benayas, J. M., Justel, A., & Salas-Rey, J. (2006). Modelling tree diversity in a highly fragmented tropical montane landscape. Global Ecology and Biogeography, 15, 602–613.

    Article  Google Scholar 

  • CEPF (Critical Ecosystem Partnership Fund) (2005). Ecosystem profile: Indo-Burman Hotspot, Eastern Himalayan Region. Washington D.C.: WWF US-Asian Programme.

    Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections; revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025–1036.

    Google Scholar 

  • Chettri, S. K., Singh, K. K., & Krishna, A. P. (2006). Anthropogenic pressure on the natural resources in fringe areas of the Khangchendzonga Biosphere Reserve. International Journal of Ecology Environment Science, 32, 229–240.

    Google Scholar 

  • Chettri, A., Barik, S. K., Pandey, H. N., & Lyngdoh, M. K. (2009). Forest fragmentation and tree diversity in Khangchendzonga Biosphere Reserve, Sikkim, India. The Indian Forester, 135(4), 459–470.

    Google Scholar 

  • Chettri, B., Acharya, B.K., & Bhupathy, S. (2011). An overview of the herpetofauna of Sikkim with the emphasis on elevational distribution pattern and threats and conservation issues. In. Biodiversity of Sikkim.

  • Chhetri, S. K., Singh, K. K., & Krishna, A. P. (2013). Resource use impacts within the forest land cover of Khangchendzonga Biosphere Reserve, Sikkim Himalaya along different disturbance levels and altitudinal zones. Applied Ecology and Environmental Research, 11(2), 273–291.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for the nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  • Cohen, W. B., & Goward, S. N. (2004). Landsat’s role in ecological applications of remote sensing. Bioscience, 54(6), 535–545.

    Article  Google Scholar 

  • Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series. Remote Sensing of Environment, 114(12), 2911–2924.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Congalton, R., & Green, K. (1999). Assessing the accuracy of remotely sensed data: principles and practices. New York: Lewis Publishers.

    Google Scholar 

  • Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: principles and practice, 2nd ed, 183. Boca Raton, FL: CRC Press/Taylor & Francis Group.

    Book  Google Scholar 

  • Coops, N. C., White, J. D., & Scott, N. A. (2004). Estimating fragmentation effects on simulated forest net primary productivity derived from satellite imagery. International Journal of Remote Sensing, 25, 819–838.

    Article  Google Scholar 

  • Dharr, U. (2002). Conservation implications of plant endemism in high-altitude Himalaya. Current Science, 82, 2.

    Google Scholar 

  • Echeverria, C., Coomes, D., Salas, J., Rey-Benaya, J. M., Lara, A., & Newton, A. (2006). Rapid deforestation and fragmentation of Chilean Temperate Forests. Biological Conservation, 130, 481–494.

    Article  Google Scholar 

  • Eigenbrod, F., Hecnar, S. J., & Fahrig, L. (2007). Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landscape Ecology, 23, 159–168.

    Article  Google Scholar 

  • Ellis, E. A., Baerenklau, A. K., Martinez, R. M., & Chavez, E. (2010). Land use/land cover change dynamics and drivers in a low-grade marginal coffee growing region of Veracruz, Mexico. Agroforestry Systematics, 80, 61–84.

    Article  Google Scholar 

  • Fahrig, L. (1997). Relative effects of habitat loss and fragmentation on population extinction. Journal of Wildlife Management, 61(3), 603–610.

    Article  Google Scholar 

  • Forest Environment and Wildlife Department (FEWMD), (2009). Management plan of the Khangchendzonga National Park: 2008–2015.

  • Forest Survey of India (FSI). (1999). State of forest report. Ministry of Environment, Forests and Climate Change, Dehradun.

  • Forest Survey of India (FSI). (2011). State of forest report. Ministry of Environment Forests, and Climate Change, Dehradun.

  • Forman, R. T. T. (1995). Land mosaics; the ecology of landscapes and regions (632 p). Cambridge, UK: Cambridge University Press.

  • Forman, R. T. T., & Godron, M. (1986). Landscape ecology. New York: Wiley.

    Google Scholar 

  • Franklin, S. E. (2001). Remote sensing for sustainable forest management. Boca Raton, FL: Lewis Publishers.

    Book  Google Scholar 

  • Fuller, T., Munguia, M., Mayfield, M., Sanchez Cordero, V., & Sarkar, S. (2006). Incorporating connectivity into conservation planning: a multi-criteria case study from central Mexico. Biological Conservation, 133, 131–142.

    Article  Google Scholar 

  • Gibson, D. J., Collins, S. L., & Good, R. E. (1988). Ecosystem fragmentation of oak-pine forest in New Jersey Pinelands. Forest Ecology Management, 25, 105–122.

    Article  Google Scholar 

  • Gilani, H., Shrestha, H. L., Murthy, M. S. R., Phuntso, P., Pradhan, S., & Bajracharya, B. (2015). Decadal land cover change dynamics in Bhutan. Journal of Environmental Management, 148, 91–100.

    Article  Google Scholar 

  • Griffith, J. A., Martinko, E. A., & Price, K. P. (2000). Landscape structure analysis of Kansas at three scales. Landscape and Urban Planning, 52, 45–61.

    Article  Google Scholar 

  • Guangwei, C. (Ed.) (2002). Biodiversity in the Eastern Himalayas: conservation through dialogue. Summary reports of the workshops on biodiversity conservation in the Hindu Kush-Himalayan Ecoregion. Kathmandu: ICIMOD.

    Google Scholar 

  • Haines-Young, R., & Chopping, M. (1996). Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Progress in Physical Geography, 20, 418–445.

    Article  Google Scholar 

  • Hajra, P.K., & Verma, D.M. (1996). Flora of Sikkim, Vol. 1. Botanical Survey of India, Calcutta.

  • Hall, F. G., Strebel, D. E., Nickeson, J. E., & Goetz, S. J. (1991). Radiometric rectification: toward a common radiometric response among multi-date, multi-sensory images. Remote Sensing of Environment, 35, 11–27.

    Article  Google Scholar 

  • Hammond, T. O., & Verbyla, D. L. (1996). Optimistic bias in the classification accuracy assessment. International Journal of Remote Sensing, 17(6), 1261–1266.

    Article  Google Scholar 

  • Hofer, T., & Messerli, B. (2006). Floods in Bangladesh: history, dynamics and rethinking the role of the Himalayas. Ecology, 29, 254–283.

    Google Scholar 

  • Holt, R. D., & Debinski, D. M. (2003). Reflections on landscape experiments and ecological theory: tools for the study of habitat fragmentation. In G. A. Bradshaw & P. A. Marquet (Eds.), How landscapes change. Human disturbance and ecosystem fragmentation in the Americas (pp. 201–218). New York, USA: Springer-Verlag.

    Google Scholar 

  • Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4, 273–288.

    Article  Google Scholar 

  • Howell, J. H. (2001). Application of bio-engineering in slope stabilization: experience from Nepal. In L. Tinachi, S. R. Chalise, & B. N. Upreti (Eds.), Landslide hazard mitigation in the Hindu Kush-Himalayas (pp. 148–158). Katmandu, Nepal: International Center for Integrated Mountain Development.

    Google Scholar 

  • Huang, C., Goward, S. N., Schleeweis, K., Thomas, N., Masek, J. G., & Zhu, Z. (2009). Dynamics of national forests assessed using the Landsat record: case studies in eastern United States. Remote Sensing of Environment, 113, 1430–1442.

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007—impacts, adaptation and vulnerability. Cambridge, MA: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • IPCC (2014). Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Ives, J. D., & Messerli, B. (1989). The Himalayan dilemma: reconciling development and conservation. London: Routledge.

    Book  Google Scholar 

  • Jensen, J.R. (2005). Introductory digital image processing: a remote sensing perspective. Pearson Prentice Hall, Upper Saddle River, NJ., 7458, 544.

  • Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y. Q., & Adams, P. (2009). Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 113, 1382–1396.

    Article  Google Scholar 

  • Kollmair, M., Gurung, G. S., Hurni, K., & Maselli, D. (2005). Mountains: special places to be protected? An analysis of worldwide nature conservation efforts in mountains. In International Journal of Biodiversity Science and Management, 1, 1–9.

    Article  Google Scholar 

  • Krishna, A. P., Chettri, S., & Sharma, E. (2002). Human dimensions of conservation in the Khangchendzonga biosphere reserve: the need for conflict prevention. Mountain Research and Development, 22, 328–331.

    Article  Google Scholar 

  • Kumar, B., & Vijayan L. (2011). The birds of Sikkim: an analysis of elevation distribution, endemism and threats. In. Biodiversity of Sikkim.

  • Kumar H., Mathur P.K., Lehmkuhl J.F., Khati, D.V.S., & Longwah, W. (2002). Management of forests in India for biological diversity and forest productivity, A new perspective—volume VI: Terai Conservation Area (TCA). WII-USDA Forest Service Collaborative Project Report, Wildlife Institute of India. Dehradun. pp xiii +158.

  • Lachungpa, U., Tambe, S., Arrawatia, M.L., & Poudyal, T.R. (2003). Biodiversity strategy and action plan: Sikkim State, NBSAP: Department of Forest, Environment and Wildlife, Government of Sikkim, 2003.

  • Lambin, E. F., Turner, B. L., & Geist, H. J. (2001). The causes of land-use and land cover change: moving beyond the myths. Global Environment Change, 11(4), 261–269.

    Article  Google Scholar 

  • Laurance, W. F. (1999). Reflections on the tropical deforestation crisis. Biological Conservation, 91, 109–117.

    Article  Google Scholar 

  • Laurance, W. F. (2000). Do edge effects occur over large spatial scales? Trends in Ecology and Evolution, 15, 134–135.

    Article  Google Scholar 

  • Lausch, A., & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2, 3–15.

    Article  Google Scholar 

  • Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape Ecology, 19, 389–399.

    Article  Google Scholar 

  • Li, M., Huang, C., Zhu, Z., Wen, W., Xu, D., & Liu, A. (2009). Use of remote sensing coupled with a vegetation change tracker model to assess rates of forest change and fragmentation in Mississippi, USA. International Journal of Remote Sensing, 30, 6559–6574.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1994). Remote sensing and image interpretation (3rd ed.). New York: Wiley.

    Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1999). Remote sensing and image interpretation (4th edition) (pp. 479–480). New York: Wiley.

    Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. International Journal of Remote Sensing, 23(13), 2651–2671.

    Article  Google Scholar 

  • Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253.

    Article  CAS  Google Scholar 

  • McGarigal, K. (2002). Landscape pattern metrics: encyclopedia of environmetrics. In A. H. El-Shaarawi & W. W. Piegorsch (Eds.), Wiley (Vol. 2 ed., pp. 1135–1142). Chichester.

  • McGarigal, K., & Cushman, S. A. (2005). The gradient concept of landscape structure. In J. Wiens & M. Moss (Eds.), Issues and perspectives in landscape ecology (pp. 112–119). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • McGarigal, K., & Marks, B. (1995). Fragstats. Spatial pattern analysis program for quantifying landscape structure. In: USDA Forest Service General Technical Report PNW-GTR-351. Pacific Northwest Research Station, Portland, OR.

  • McGinley, M. (2008). Biological diversity in the Himalayas. http://www.eoearth.org/article/Biological_diversity_in__the_Himalayas. Accessed 20 Dec 2015.

  • Midha, N., & Mathur, N. (2010). Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using Fragstats computed class level metrics. Journal of the Indian Society of Remote Sensing, 38, 487–500.

    Article  Google Scholar 

  • Misri, B. (2002). Impact of agro-pastoralism on development of the Indian Himalaya. In Proceedings of the Fifth Meeting of the Temperate Asia Pasture and Fodder Network (TAPAFON). Bhutan: Ministry of Agriculture, Royal Government of Bhutan.

    Google Scholar 

  • Mittermeier, R.A., Gils, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreaux, J. & da Fonseca, GAB. (eds) (2004). Hotspots revisited. Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico city: CEMEX.

  • Miyamoto, A., & Sano, M. (2008). The influence of forest management on landscape structure in the cool temperate forest region of central Japan. Landscape and Urban Planning, 86, 248–256.

    Article  Google Scholar 

  • Morrison, M. L., Marcot, B. G., & Mannan, R. W. (1992). Wildlife-habitat relationships: concepts and applications. Madison, Wisconsin: University of Wisconsin Press 343 p.

    Google Scholar 

  • Myers, N. (1986). The environmental dimension to security issues. Environmentalist, 6(4), 251–257.

    Article  Google Scholar 

  • Nagendra, H., Paul, S., Pareeth, S., & Dutt, S. (2009). Landscapes of protection: forest change and fragmentation in Northern West Bengal, India. Environmental Management, 44(5), 853–864.

    Article  Google Scholar 

  • NAS. (National Academy of Sciences) (2012). Himalayan glaciers: climate change, water resources, and water security. Washington, DC: National Academies Press.

    Google Scholar 

  • Noss, R. F. (2001). Forest fragmentation in the southern rocky mountains. Landscape Ecology, 16, 371–372.

    Article  Google Scholar 

  • Onojeghuo, A. O., & Blackburn, G. A. (2011). Forest transition in an ecologically important region: patterns and causes for landscape dynamics in the Niger Delta. Ecological Indicators, 11, 1437–1446.

    Article  Google Scholar 

  • Pandit, M., & Kumar, V. (2013). Land-use change and conservation challenges in the Indian Himalaya: past, present, and future. In S. S. Navjot, L. Gibson, & P. H. Raven (Eds.), Conservation biology: voices from the tropics. Chichester, UK: Wiley.

    Google Scholar 

  • Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A., & Brook, B. W. (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153–163.

    Article  Google Scholar 

  • Parent, J. (2009). Landscape fragmentation analysis (version 2). USA: University of Connecticut Press.

    Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.

    Article  CAS  Google Scholar 

  • Pei, S. (1995). Banking on biodiversity, report on the regional consultations on biodiversity assessment in the Hindu Kush-Himalaya. Kathmandu: ICIMOD.

    Google Scholar 

  • Pradhan, S., & Bhujel, R. (2000). Biodiversity conservation in the Darjeeling Himalayas. In Kangchenjunga Mountain Complex: biodiversity assessment and conservation planning, pp. 31–78. Kathmandu: WWF Nepal Programme.

  • Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J., Washington, W., Fu, Q., Sikka, D., & Wild, M. (2005). Atmospheric brown clouds: impacts on south Asian climate and hydrological cycle. Proceedings National Academy of Sciences USA, 102(15), 5326–5333.

    Article  CAS  Google Scholar 

  • Rasul, G. (2010). The role of the Himalayan mountain systems in food security and agricultural sustainability in South Asia. International Journal of Rural Management, 6(1), 95–116.

    Article  Google Scholar 

  • Reed, R. A., Johnson-Barnard, J., & Baker, W. L. (1996). Fragmentation of a forested Rocky Mountain landscape, 1950-1993. Biological Conservation, 75, 267–277.

    Article  Google Scholar 

  • Richter, R., & Schlapfer, D. (2013). Atmospheric/topographic correction for satellite imagery. Atcor-2/3 user guide, version 8.2.1., February 2013. Available at http://www.rese.ch/pdf/atcor3 manual.pdf. Accessed 10 Dec 2015.

  • Ripple, W. J., Bradshaw, G. A., & Spies, T. A. (1991). Measuring forest landscape patterns in the Cascade Range of Oregon, USA. Biological Conservation, 57, 73–88.

    Article  Google Scholar 

  • Rodrigues, A. S. L., Andelman, S. J., Bakarr, M. I., Boltani, L., Brooks, T. M., Cowling, R. M., Fishpool, L. D. C., Da Fonseca, G. A. B., Gaston, K. J., Hoffmann, M., Long, J. S., Marquet, P. A., Pilgrim, J. D., Pressey, R. L., Schipper, J., Sechrest, W., Stuart, S. N., Underhill, L. G., Waller, R. W., Watts, M. E. J., & Yan, X. (2004). Effectiveness of the global protected area network in representing species diversity. Nature, 428, 640–643.

    Article  CAS  Google Scholar 

  • Saura, S., & Martinez-Millan, J. (2001). Sensitivity of landscape pattern metrics to map spatial extent. Photogrammetric Engineering and Remote Sensing, 67, 1027–1036.

    Google Scholar 

  • Saura, S., Bodin, O., & Fortin, M. J. (2014). Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. Journal of Applied Ecology, 51, 171–182.

    Article  Google Scholar 

  • Schild, A. (2008). The case of the Hindu Kush-Himalayas: ICIMOD’s position on climate change and mountain systems. Mountain Research and Development, 28(3/4), 328–331.

    Article  Google Scholar 

  • Schumaker, N. H. (1996). Using landscape indices to predict habitat connectivity. Ecology, 77, 1210–1225.

    Article  Google Scholar 

  • Sharma, E., & Chettri, N. (2005). ICIMOD’s transboundary biodiversity management initiative in the Hindu Kush-Himalayas. Mountain Research and Development, 25(3), 280–283.

    Article  Google Scholar 

  • Sharma, S., & Roy, P. S. (2007). Forest fragmentation in the Himalaya: a central Himalayan case study. International Journal of Sustainable Development World, 14, 201–210.

    Article  Google Scholar 

  • Sharma, S., Palni, L. M. S., & Roy, P. S. (2001). Analysis of fragmentation and anthropogenic disturbances in the Himalayan forests: use of remote sensing and GIS. Asian Journal of Geoinformatics, 2(4), 63–69.

    Google Scholar 

  • Singh, A. (1989). Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10, 989–1003.

    Article  Google Scholar 

  • Singh, H.B. (2004). Grazing impact on plant diversity and productivity along a tourist trekking corridor in the Khangchendzonga Biosphere Reserve of Sikkim, Ph.D. Thesis. G.B. Pant Institute of Himalayan Environment and Development, Northeast Unit, Itanagar, Arunachal Pradesh, India.

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., & Averyt, K. V. (2007). IPCC, 2007. Climate change 2007: the physical science basis. In Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Spies, T. A., Ripple, W. J., & Bradshaw, G. A. (1994). Dynamics and pattern of a managed coniferous forest landscape in Oregon. Ecological Application, 4(3), 555–568.

    Article  Google Scholar 

  • Su, S., Jiang, Z., Zhang, Q., & Zhang, Y. (2011). Transformation of agricultural landscapes under rapid urbanization: a threat to sustainability in Hang-Jia-Hu region, China. Applied Geography, 31, 439–449.

    Article  Google Scholar 

  • Su, S., Ma, X., & Xiao, R. (2014). Agricultural landscape pattern changes in response to urbanization at eco-regional scale. Ecological Indicators, 40, 10–18.

    Article  Google Scholar 

  • Tambe, S., & Rawat, G. S. (2009). Ecology, economics and equity of the pastoral systems in the Khangchendzonga National Park, Sikkim Himalaya, India. Ambio, 38(2), 95–100.

    Article  Google Scholar 

  • Tambe, S., Arrawatia, M. L., & Sharma, N. (2011). Assessing the priorities sustainable forest management in the Sikkim, Himalaya, India: a remote sensing based approach. Journal of the Indian Society of Remote Sensing, 10, 109–119.

    Google Scholar 

  • Tambe, S., Ramesh, K., & Rawat, G. S. (2012). Assessment of landscape characteristics and changes in the Khangchendzonga National Park, Sikkim Himalaya, India. Geophysics and Remote Sensing, 1(1), 1–8.

    Google Scholar 

  • Tang, J., Wang, L., & Yao, Z. (2008). Analyses of urban landscape dynamics using multi-temporal satellite images: a comparison of two petroleum-oriented cities. Landscape and Urban Planning, 87, 269–278.

    Article  Google Scholar 

  • Turner, M. G. (1989). Landscape ecology; the effect of pattern on process. Annual Review of Ecology and Systematics, 20, 179–197.

    Article  Google Scholar 

  • Turner, I. M. (1996). Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology, 33, 200–209.

    Article  Google Scholar 

  • UNDP (2004). Sharing innovative experiences. Examples of successful conservation and sustainable use of dryland biodiversity, volume 9. New York: UNDP Special Unit for South-South Cooperation.

    Google Scholar 

  • UNEP-WCMC (2000). A global overview of protected areas on the world heritage list of particular importance for biodiversity. Cambridge, UK: A contribution to the Global Theme Study of World Heritage Natural Sites.

    Google Scholar 

  • Vogt, P., Riitters, K., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22, 171–177.

    Article  Google Scholar 

  • Vos, C. C., Verboom, J., Opdam, P. F. M., & Braak, C. J. F. (2001). Toward ecologically scaled landscape indices. The American Naturalist, 183, 24–41.

    Article  Google Scholar 

  • WWF & ICIMOD (2001). Eco-region based conservation in the Eastern Himalaya: identifying important areas for biodiversity conservation. Kathmandu, Nepal: WWF-Nepal.

    Google Scholar 

  • Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., & Wilkes, A. (2009). The melting Himalayas: cascading effects of climate change on water, biodiversity and livelihoods. Conservation Biology, 24(3), 520–530.

    Article  Google Scholar 

  • Zeng, H., & Wu, X. B. (2005). Utilities of edge-based metrics for studying landscape fragmentation. Environment and Urban Systems, 29, 159–178.

    Article  Google Scholar 

  • Zeng, Y., Schaepman, M. E., Wu, B., Clevers, J., & Bregt, A. K. (2008). Scaling based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China. Remote Sensing of Environment, 112, 4261–4271.

    Article  Google Scholar 

Download references

Acknowledgments

The authors specifically acknowledge Mr. Ravi Singh (Secretary General and CEO, WWF-India) and Dr. Sejal Worah (Programme Director, WWF-India) for facilitating the study. The computational facilities of IGCMC & IT, WWF-India, are used; support to this research is greatly acknowledged by authors. The authors also express their sincere thanks to the staff members of IGCMC Division, WWF-India, for their continuous support and help in carrying out the work. The authors also acknowledge anonymous reviewers and editorial team of the journal for constructive comments and suggestions to improve the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Areendran, G., Raj, K. et al. Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya—a case study from Khangchendzonga Biosphere Reserve, Sikkim, India. Environ Monit Assess 188, 596 (2016). https://doi.org/10.1007/s10661-016-5577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5577-8

Keywords

Navigation