Skip to main content

Advertisement

Log in

Analysis of visible and near infrared spectral reflectance for assessing metals in soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Visible and near infrared reflectance (VNIR; 350–2500 nm) spectroscopy has greatly been used in soils, especially for studying variability in spectrally active soil components (e.g., organic carbon, clays, and Fe/Al oxides) based on their diagnostic spectral features. In recent years, this technique has also been applied to assess soil metallic ions. In this research, the feasibility of VNIR spectroscopy for determination of soil metals was investigated with two soil data sets: (i) artificially metal-spiked and (ii) in situ metal-contaminated soils. Results showed that reflectance spectra of neither metal-spiked soils with Cd, As, and Pb even at their higher concentrations of 20, 900, and 1200 mg kg−1, respectively, nor in situ metal-contaminated soils (with concentrations of 30 mg Cd, 3019 mg As, and 5725 mg Pb kg−1 soil) showed any recognized absorption peaks that correspond to soil metal concentrations. We observed variations in reflectance intensity for in situ metal-contaminated soils only, showing higher reflectance across the entire spectrum for strongly and lower for less metal-contaminated soils. A significant correlation was found between surface soil metals’ concentrations and continuum removed spectra, while soil metals were also found significantly associated with soil organic matter and total Fe. A partial least square regression with cross-validation approach produced an acceptable prediction of metals (R 2 = 0.58–0.94) for both soil data sets, metal-spiked and in situ metal-contaminated soils. However, high values of root mean square error ruled out practical application of the achieved prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamchuk, V. I., Hummel, J., Morgan, M., & Upadhyaya, S. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91.

    Article  Google Scholar 

  • Al Maliki, A., Bruce, D., & Owens, G. (2012). Capabilities of remote sensing hyperspectral images for the detection of lead contamination: a review. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. Melbourne, 55.

  • Al Maliki, A., Bruce, D., & Owens, G. (2014). Prediction of lead concentration in soil using reflectance spectroscopy. Environmental Technology & Innovation, 1, 8–15.

    Article  Google Scholar 

  • Baveye, P. C., & Laba, M. (2015a). Comment on “Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review” by Horta et al. Geoderma.

  • Baveye, P. C., & Laba, M. (2015b). Visible and near-infrared reflectance spectroscopy is of limited practical use to monitor soil contamination by heavy metals. Journal of Hazardous Materials, 285, 137–139.

    Article  CAS  Google Scholar 

  • Bellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398–1410.

    Article  CAS  Google Scholar 

  • Ben-Dor, E., & Banin, A. (1995). Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59(2), 364–372.

    Article  CAS  Google Scholar 

  • Ben-Dor, E., Chabrillat, S., Dematte, J. A. M., Taylor, G. R., Hill, J., Whiting, M. L., et al. (2009). Using imaging spectroscopy to study soil properties. Remote Sensing of Environment, 113, S35–S38.

    Article  Google Scholar 

  • Ben-Dor, E., Ong, C., & Lau, I. C. (2015). Reflectance measurements of soils in the laboratory: standards and protocols. Geoderma, 245, 112–124.

    Article  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.

    Article  CAS  Google Scholar 

  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Dewayne Mays, M., & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132(3–4), 273–290.

    Article  CAS  Google Scholar 

  • Cécillon, L., Barthès, B. G., Gomez, C., Ertlen, D., Genot, V., Hedde, M., et al. (2009). Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS. European Journal of Soil Science, 60(5), 770–784.

    Article  Google Scholar 

  • Chen, T., Chang, Q., Liu, J., Clevers, J., & Kooistra, L. (2016). Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in northwest China. Science of the Total Environment, 565, 155–164.

    Article  CAS  Google Scholar 

  • Chodak, M., Nikli, M., & Beese, F. (2007). Near-infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in a heavy-metal-polluted area. Biology and Fertility of Soils, 44(1), 171–180.

    Article  CAS  Google Scholar 

  • Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. Rencz (Ed.), Remote sensing for the earth sciences: manual of remote sensing (3rd ed., pp. 3–58). New York: John Wiley & Sons.

    Google Scholar 

  • Condit, H. (1970). The spectral reflectance of American soils. Photogrammetric Engineering, 36(9), 955–966.

    Google Scholar 

  • Dalal, R., & Henry, R. (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society of America Journal, 50(1), 120–123.

    Article  CAS  Google Scholar 

  • DIN-EN-13657 (2003). Characterization of waste - Digestion for subsequent determination of aqua regia soluble portion of elements in waste; German version of EN 13657:2002. DIN, the German Institute for Standardization.

  • Dorigo, W., Bachmann, M., & Heldens, W. (2006). AS toolbox and processing of field spectra: uses ‘manual, Version 1.13. Wessling, Germany: German Aerospace Center (DLR), German Remote Sensing Data Center, Institute for Environment and Geo-information Team Imaging Spectroscopy.

  • Du, C., & Zhou, J. (2009). Evaluation of soil fertility using infrared spectroscopy: a review. Environmental Chemistry Letters, 7(2), 97–113.

    Article  CAS  Google Scholar 

  • Farifteh, J., Van der Meer, F., Van der Meijde, M., & Atzberger, C. (2008). Spectral characteristics of salt-affected soils: a laboratory experiment. Geoderma, 145(3–4), 196–206.

    Article  CAS  Google Scholar 

  • Fidencio, P. H., Poppi, R. J., & de Andrade, J. C. (2002). Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Analytica Chimica Acta, 453(1), 125–134.

    Article  CAS  Google Scholar 

  • Galvão, L. S., Formaggio, A. R., Couto, E. G., & Roberts, D. A. (2008). Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2), 259–271.

    Article  Google Scholar 

  • Galvdo, L. S., Vitorello, Í., & Formaggio, A. R. (1997). Relationships of spectral reflectance and color among surface and subsurface horizons of tropical soil profiles. Remote Sensing of Environment, 61(1), 24–33.

    Article  Google Scholar 

  • Gholizadeh, A., Borůvka, L., Vašát, R., Saberioon, M., Klement, A., Kratina, J., et al. (2015). Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study. PloS One, 10(2), e0117457.

    Article  Google Scholar 

  • Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T., McBratney, A., et al. (2015). Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma, 241, 180–209.

    Article  Google Scholar 

  • IBA (2010). Biomass on contaminated land: options of biomass crops on contaminated soil - Cultivation and utilization of biomass in the area of Freiberg / Saxony, under the EU project ReSource, international Building Exhibition (IBA) Fürst-Pückler-Land GmbH, Großräschen, DE. CENTRAL EUROPE Project 1CE084P4 ReSOURCE. (pp. 1–8).

  • Knadel, M., Thomsen, A., & Greve, M. H. (2011). Multisensor on-the-go mapping of soil organic carbon content. Soil Science Society of America Journal, 75(5), 1799–1806.

    Article  CAS  Google Scholar 

  • LfULG (2015). Materialien zum Bodenschutz: Boden-Dauerbeobachtungsprogramm des LfULG in Sachsen Standortcharakteristika (Materials for soil conservation: soil monitoring program of the LfULG in Saxony), Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (Saxon State Agency for Environment, Agriculture and Geology), Freiberg, Freistaates Sachsen, Germany.

  • Liu, Y., Li, W., Wu, G., & Xu, X. (2011). Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data—a case study along Le’an river, China. Geo-Spatial Information Science, 14(1), 10–16.

    Article  CAS  Google Scholar 

  • Malley, D. F., & Williams, P. C. (1997). Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environmental Science and Technology, 31(12), 3461–3467.

    Article  CAS  Google Scholar 

  • Mohamed, E., Ali, A., El Shirbeny, M., El Razek, A. A. A., & Savin, I. Y. (2016). Near infrared spectroscopy techniques for soil contamination assessment in the Nile Delta. Eurasian Soil Science, 49(6), 632–639.

    Article  CAS  Google Scholar 

  • Morra, M., Hall, M., & Freeborn, L. (1991). Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Science Society of America Journal, 55(1), 288–291.

    Article  CAS  Google Scholar 

  • Murphy, R. J., Taylor, Z., Schneider, S., & Nieto, J. (2015). Mapping clay minerals in an open-pit mine using hyperspectral and LiDAR data. European Journal of Remote Sensing, 48, 511–526.

    Article  Google Scholar 

  • Nanni, M. R., & Dematte, J. A. M. (2006). Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70(2), 393.

    Article  CAS  Google Scholar 

  • Niazi, N. K., Singh, B., & Minasny, B. (2015). Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. International journal of Environmental Science and Technology, 12(6), 1965–1974.

    Article  CAS  Google Scholar 

  • Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., et al. (2015). Chapter four—soil spectroscopy: an alternative to wet chemistry for soil monitoring. Advances in Agronomy, 132, 139–159.

    Article  Google Scholar 

  • Pandit, C. M., Filippelli, G. M., & Li, L. (2010). Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing, 31(15), 4111–4123.

    Article  Google Scholar 

  • Rathod, P. H., Brackhage, C., Van der Meer, F. D., Müller, I., Noomen, M. F., Rossiter, D. G., et al. (2015). Spectral changes in the leaves of barley plant due to phytoremediation of metals-results from a pot study. European Journal of Remote Sensing, 48, 283–302.

    Article  Google Scholar 

  • Reeves, J. (2002). The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental Pollution, 116, S277–S284.

    Article  CAS  Google Scholar 

  • Reeves III, J. B. (2010). Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? Geoderma, 158(1–2), 3–14.

    Article  CAS  Google Scholar 

  • Ren, H. Y., Zhuang, D. F., Singh, A. N., Pan, J. J., Qiu, D. S., & Shi, R. H. (2009). Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: a case study. Pedosphere, 19(6), 719–726.

    Article  CAS  Google Scholar 

  • Scheinost, A. C., & Schwertmann, U. (1999). Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Science Society of America Journal, 63(5), 1463–1471.

    CAS  Google Scholar 

  • Scheinost, A. C., Chavernas, A., Barron, V., & Torrent, J. (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantity Fe oxide minerals in soils. Clays and Clay Minerals, 46(5), 528–536.

    Article  CAS  Google Scholar 

  • Schwartz, G., Eshel, G., & Ben-Dor, E. (2011). Reflectance spectroscopy as a tool for monitoring contaminated soils. Soil Contamination, 67–90.

  • Shao, Y., & He, Y. (2011). Nitrogen, phosphorus, and potassium prediction in soils, using infrared spectroscopy. Soil Research, 49(2), 166–172.

    Article  CAS  Google Scholar 

  • Shenk, J. S., Workman, J. J., & Westerhaus, M. O. (2001). Application of NIR spectroscopy to agricultural products. Practical Spectroscopy Series, 27, 419–474.

    CAS  Google Scholar 

  • Shi, T., Chen, Y., Liu, Y., & Wu, G. (2014). Visible and near-infrared reflectance spectroscopy—an alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials, 265, 166–176.

    Article  CAS  Google Scholar 

  • Shonk, J., Gaultney, L., Schulze, D., & Van Scoyoc, G. (1991). Spectroscopic sensing of soil organic matter content. Transactions of the ASAE, 34(5), 1978–1984.

    Article  Google Scholar 

  • Siebielec, G., McCarty, G. W., Stuczynski, T. I., & Reeves III, J. B. (2004). Near-and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content. Journal of Environmental Quality, 33(6), 2056.

    Article  CAS  Google Scholar 

  • Stazi, S. R., Antonucci, F., Pallottino, F., Costa, C., Marabottini, R., Petruccioli, M., et al. (2014). Hyperspectral visible–near infrared determination of arsenic concentration in soil. Communications in Soil Science and Plant Analysis, 45(22), 2911–2920.

    Article  CAS  Google Scholar 

  • Stenberg, B., & Rossel, R. V. (2010). Diffuse reflectance spectroscopy for high-resolution soil sensing. In Proximal Soil Sensing (pp. 29–47): Springer.

  • Stenberg, B., Viscarra Rossel, R. A., Mouazen, A., & Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. In L. S. Donald (Ed.), Advances in agronomy (Vol. Volume 107, pp. 163–215): Academic Press.

  • Stoner, E. R., & Baumgardner, M. (1981). Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, 45(6), 1161–1165.

    Article  Google Scholar 

  • Summers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11(1), 123–131.

    Article  CAS  Google Scholar 

  • USEPA (1996). US EPA 3050b: acid digestion of sediments, sludges, and soils. Revised 1996.

  • USEPA (1998). US EPA 3051a: microwave assisted acid digestion of sediments, sludges, soils, and oils – reference to: www.epa.gov/epaoswer/hazwaste/test/pdfs/3051a.pfd. Revised 1998.

  • van der Meer, F. D. (2002). Basic physics of spectrometry. In F. D. van der Meer, & S. M. De Jong (Eds.), Imaging spectrometry (Vol. Volume 4 of the series Remote sensing and digital image processing pp. 3–16): Springer Netherlands.

  • Vohland, M., Bossung, C., & Fründ, H. C. (2009). A spectroscopic approach to assess trace-heavy metal contents in contaminated floodplain soils via spectrally active soil components. Journal of Plant Nutrition and Soil Science, 172(2), 201–209.

    Article  CAS  Google Scholar 

  • Volkan Bilgili, A., Van Es, H. M., Akbas, F., Durak, A., & Hively, W. D. (2010). Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments, 74(2), 229–238.

    Article  Google Scholar 

  • Wang, J., Cui, L., Gao, W., Shi, T., Chen, Y., & Gao, Y. (2014). Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma, 216, 1–9.

    Article  Google Scholar 

  • Wu, Y. Z., Chen, J., Ji, J. F., Tian, Q. J., & Wu, X. M. (2005a). Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Environmental Science and Technology, 39(3), 873–878.

    Article  CAS  Google Scholar 

  • Wu, Y. Z., Chen, J., Wu, X., Tian, Q., Ji, J., & Qin, Z. (2005b). Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Applied Geochemistry, 20(6), 1051–1059.

    Article  CAS  Google Scholar 

  • Wu, C. Y., Jacobson, A. R., Laba, M., Kim, B., & Baveye, P. C. (2010). Surrogate correlations and near-infrared diffuse reflectance sensing of trace metal content in soils. Water, Air, and Soil Pollution, 209(1–4), 377–390.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhang, X., Liao, Q., & Ji, J. (2011). Can contaminant elements in soils be assessed by remote sensing technology: a case study with simulated data. Soil Science, 176(4), 196–205.

    Article  CAS  Google Scholar 

  • Xia, X. Q., Mao, Y. Q., Ji, J. F., Ma, H. R., Chen, J., & Liao, Q. L. (2007). Reflectance spectroscopy study of Cd contamination in the sediments of the Changjiang river, China. Environmental Science and Technology, 41(10), 3449–3454.

    Article  CAS  Google Scholar 

  • Yeniay, O., & Goktas, A. (2002). A comparison of partial least squares regression with other prediction methods. Hacettepe Journal of Mathematics and Statistics, 31(99), 99–101.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the European Commission Higher Education Program for granting EMECW Lot-15 India scholarship to support this research. Special thanks to faculties at Department of Earth System Analysis, ITC, University of Twente; at Institute of General Ecology and Conservation, Tharandt, TU Dresden; and at Saxon State Office for Environment, Agriculture and Geology, Freiberg for their invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paresh H. Rathod.

Electronic supplementary material

ESM 1

(DOCX 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, P.H., Müller, I., Van der Meer, F.D. et al. Analysis of visible and near infrared spectral reflectance for assessing metals in soil. Environ Monit Assess 188, 558 (2016). https://doi.org/10.1007/s10661-016-5568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5568-9

Keywords

Navigation