Skip to main content
Log in

Google Street View as an alternative method to car surveys in large-scale vegetation assessments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Car surveys (CS) are a common method for assessing the distribution of alien invasive plants. Google Street View (GSV), a free-access web technology where users may experience a virtual travel along roads, has been suggested as a cost-effective alternative to car surveys. We tested if we could replicate the results from a countrywide survey conducted by car in Portugal using GSV as a remote sensing tool, aiming at assessing the distribution of Eucalyptus globulus Labill. wildlings on roadsides adjacent to eucalypt stands. Georeferenced points gathered along CS were used to create road transects visible as lines overlapping the road in GSV environment, allowing surveying the same sampling areas using both methods. This paper presents the results of the comparison between the two methods. Both methods produced similar models of plant abundance, selecting the same explanatory variables, in the same hierarchical order of importance and depicting a similar influence on plant abundance. Even though the GSV model had a lower performance and the GSV survey detected fewer plants, additional variables collected exclusively with GSV improved model performance and provided a new insight into additional factors influencing plant abundance. The survey using GSV required ca. 9 % of the funds and 62 % of the time needed to accomplish the CS. We conclude that GSV may be a cost-effective alternative to CS. We discuss some advantages and limitations of GSV as a survey method. We forecast that GSV may become a widespread tool in road ecology, particularly in large-scale vegetation assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abella, S. R., Spencer, J. E., Hoines, J., & Nazarchyk, C. (2009). Assessing an exotic plant surveying program in the Mojave Desert, Clark County, Nevada, USA. Environmental Monitoring and Assessment, 151(1–4), 221–230. doi:10.1007/s10661-008-0263-0.

    Article  Google Scholar 

  • Águas, A., Ferreira, A., Maia, P., Fernandes, P. M., Roxo, L., Keizer, J., et al. (2014). Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. Forest Ecology and Management, 323, 47–56. doi:10.1016/j.foreco.2014.03.012.

    Article  Google Scholar 

  • Albuquerque, J. P. M. (1954). Carta Ecológica de Portugal. Lisboa: Ministério da Economia, Direcção Geral dos Serviços Agrícolas.

    Google Scholar 

  • Almeida, M. H., Chaves, M. M., & Silva, J. C. (1994). Cold acclimation in eucalypt hybrids. Tree Physiology, 14, 921–932. doi:10.1093/treephys/14.7-8-9.921.

    Article  Google Scholar 

  • Amor, R. L., & Stevens, P. L. (1976). Spread of weeds from a roadside into sclerophyll forests at Dartmouth, Australia. Weed Research, 16(2), 111–118. doi:10.1111/j.1365-3180.1976.tb00388.x.

    Article  Google Scholar 

  • Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., et al. (2010). Google Street View: capturing the world at street level. Computer, 43(6), 32–38. doi:10.1109/MC.2010.170.

    Article  Google Scholar 

  • Bivand, R., & Piras, G. (2015). Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software, 63(18), 1–36.

    Article  Google Scholar 

  • Bivand, R., Hauke, J., & Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geographical Analysis, 45(2), 150–179. doi:10.1111/gean.12008.

    Article  Google Scholar 

  • Bjørnstad, O., & Falck, W. (2001). Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics, 8, 53–70. doi:10.1023/A:1009601932481.

    Article  Google Scholar 

  • Buhlea, E. R., Margolis, M., & Ruesink, J. L. (2005). Bang for buck: cost-effective control of invasive species with different life histories. Ecological Economics, 52(3), 355–366. doi:10.1016/j.ecolecon.2004.07.018.

    Article  Google Scholar 

  • Buston, P. M., & Elith, J. (2011). Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. Journal of Animal Ecology, 80(3), 528–538. doi:10.1111/j.1365-2656.2011.01803.x.

    Article  Google Scholar 

  • Calviño-Cancela, M., & Rubido-Bará, M. (2013). Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. Forest Ecology and Management, 305(1), 129–137. doi:10.1016/j.foreco.2013.05.037.

    Article  Google Scholar 

  • Catry, F. X., Moreira, F., Tujeira, R., & Silva, J. S. (2013). Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. Forest Ecology and Management, 310, 194–203. doi:10.1016/j.foreco.2013.08.036.

    Article  Google Scholar 

  • Catry, F. X., Moreira, F., Deus, E., Silva, J. S., & Águas, A. (2015). Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biological Invasions, 17(11), 3163–3181. doi:10.1007/s10530-015-0943-y.

    Article  Google Scholar 

  • Christen, D., & Matlack, G. (2006). The role of roadsides in plant invasions: a demographic approach. Conservation Biology, 20(2), 385–391. doi:10.1111/j.1523-1739.2006.00315.x.

    Article  Google Scholar 

  • Crase, B., Liedloff, A. C., & Wintle, B. A. (2012). A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 35, 879–888. doi:10.1111/j.1600-0587.2011.07138.x.

    Article  Google Scholar 

  • Cremer, K. W. (1965). How eucalypt fruits release their seed. Australian Journal of Botany, 13(1), 11–16. doi:10.1071/BT9650011.

    Article  Google Scholar 

  • Cremer, K. W. (1977). Distance of seed dispersal in eucalypts estimated from seed weights. Australian. Forest Research, 7, 225–228.

    Google Scholar 

  • Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88(3), 528–534. doi:10.1046/j.1365-2745.2000.00473.x.

    Article  Google Scholar 

  • De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology, 88(1), 243–251. doi:10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2.

    Article  Google Scholar 

  • Doménech, R., Vilà, M., Pino, J., & Gesti, J. (2005). Historical land-use legacy and Cortaderia selloana invasion in the Mediterranean region. Global Change Biology, 11, 1054–1064. doi:10.1111/j.1365-2486.2005.00965.x.

    Article  Google Scholar 

  • Drasgow, F. (1986). Polychoric and polyserial correlations. In S. Kotz & N. Johnson (Eds.), The encyclopedia of statistics (Vol. vol. 7, pp. 68–74). Wiley.

  • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. doi:10.1111/j.1365-2656.2008.01390.x.

    Article  CAS  Google Scholar 

  • Forman, R. T. T., & Alexander, L. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231. doi:10.1146/annurev.ecolsys.29.1.207.

    Article  Google Scholar 

  • Fortin, M. J., & Dale, M. (2005). Spatial analysis. A guide for ecologists. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fox, J. (2010). R package polycor: polychoric and polyserial correlations, v. 0.7–8. https://cran.r-project.org/. Accessed Jan 2016.

  • Gelbard, J. L., & Belnap, J. (2003). Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology, 17(2), 420–432. doi:10.1046/j.1523-1739.2003.01408.x.

    Article  Google Scholar 

  • Gill, A. M. (1997). Eucalypts and fires: interdependent or independent? In J. E. Williams & J. C. Z. Woinarski (Eds.), Eucalypt ecology: individuals to ecosystems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Google. (2015). Explore street view. https://www.google.com/maps/streetview/explore/. Accessed Feb 2016.

  • Hansen, M. J., & Clevenger, A. P. (2005). The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological Conservation, 125(2), 249–259. doi:10.1016/j.biocon.2005.03.024.

    Article  Google Scholar 

  • Hoelzl, I., & Marie, R. (2014). Google Street View: navigating the operative image. Visual Studies, 29(3), 261–271. doi:10.1080/1472586X.2014.941559.

    Article  Google Scholar 

  • Humara, J. M., Casares, A., & Majada, J. (2002). Effect of seed size and growing media water availability on early seedling growth in Eucalyptus globulus. Forest Ecology and Management, 167, 1–11. doi:10.1016/S0378-1127(01)00697-1.

    Article  Google Scholar 

  • Jacobs, M. R. (1979). Eucalypts for planting. Forestry Series. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Johnson, E. D. (1926). A comparison of the juvenile and adult leaves of Eucalyptus globulus. New Phytologist, 25, 202–212. doi:10.1111/j.1469-8137.1926.tb06691.x.

    Article  Google Scholar 

  • Jordan, G. J., Borralho, N. M. G., Tilyard, P., & Potts, B. M. (1994). Identification of races in Eucalyptus globulus spp globulus based on growth traits in Tasmania and geographic distribution. Silvae Genetica, 43(5–6), 292–298.

    Google Scholar 

  • Kadmon, R., Farber, O., & Danin, A. (2004). Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications, 14(2), 401–413. doi:10.1890/02-5364.

    Article  Google Scholar 

  • Kalkhan, M. A., & Stohlgren, T. J. (2000). Using multi-scale sampling and spatial cross-correlation to investigate patterns of plant species richness. Environmental Monitoring and Assessment, 64(3), 591–605. doi:10.1023/a:1006329707198.

    Article  Google Scholar 

  • Kirkpatrick, J. B. (1975). Natural distribution of Eucalyptus globulus Labill. Australian Geographer, 13(1), 22–35. doi:10.1080/00049187508702675.

    Article  Google Scholar 

  • Kirkpatrick, J. B. (1977). Eucalypt invasion in Southern California. Australian Geographer, 13(6), 387–393. doi:10.1080/00049187708702717.

    Article  Google Scholar 

  • Larcombe, M. J., Silva, J. S., Vaillancourt, R. E., & Potts, B. M. (2013). Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biological Invasions, 15(12), 2763–2781. doi:10.1007/s10530-013-0492-1.

    Article  Google Scholar 

  • Lorenzo, P., González, L., & Reigosa, M. J. (2010). The genus Acacia as invader: the characteristic case of Acacia dealbata link in Europe. Annals of Forest Science, 67(1). doi:10.1051/forest/2009082.

  • Mazerolle, D., & Blaney, S. (2010). Google Street View: a new online tool with potential application to roadside invasive species detection and monitoring. In E. Rindos (Ed.), 5th Biennial Weeds Across Borders Conference, Shepherdstown, USA, 2010 (pp. 77–83).

  • McAvoy, T. J., Snyder, A. L., Johnson, N., Salom, S. M., & Kok, L. T. (2012). Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Science and Management, 5(4), 506–512. doi:10.1614/IPSM-D-12-00039.1.

    Article  Google Scholar 

  • Milton, S. J., & Dean, W. R. J. (1998). Alien plant assemblages near roads in arid and semi-arid South Africa. Diversity and Distributions, 4, 175–187. doi:10.1046/j.1472-4642.1998.00024.x.

    Article  Google Scholar 

  • Norton, D. A., & Warburton, B. (2015). The potential for biodiversity offsetting to fund effective invasive species control. Conservation Biology, 29(1), 5–11. doi:10.1111/cobi.12345.

    Article  Google Scholar 

  • Olea, P. P., & Mateo-Tomás, P. (2013). Assessing species habitat using Google Street View: a case study of cliff-nesting vultures. PloS One, 8(1), e54582. doi:10.1371/journal.pone.0054582.

    Article  CAS  Google Scholar 

  • Olea, P. P., & Mateo-Tomás, P. (2016). Exploiting virtual globes for ecology and conservation in the Digital Earth era. Frontiers in Ecology and the Environment, 14(1), 11–12. doi:10.1002/FEEOlealetter.1.

    Article  Google Scholar 

  • Olsen, A. R., & Schreuder, H. T. (1997). Perspectives on large-scale natural resource surveys when cause-effect is a potential issue. Environmental and Ecological Statistics, 4(2), 167–180. doi:10.1023/a:1018522428238.

    Article  Google Scholar 

  • Orshan, G. (1989). Plant pheno-morphological studies in Mediterranean type ecosystems. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Parendes, L. A., & Jones, J. A. (2000). Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews experimental forest, Oregon. Conservation Biology, 14(1), 64–75. doi:10.1046/j.1523-1739.2000.99089.x.

    Article  Google Scholar 

  • Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.

    Article  Google Scholar 

  • Potts, B. M., & Gore, P. (1995). Reproductive biology and controlled pollination of eucalyptus—a review. Hobart: School of Plant Science, University of Tasmania.

    Google Scholar 

  • Potts, B. M., Vaillancourt, R. E., Jordan, G., Dutkowski, G., Silva, J. C., McKinnon, G., et al. (2004). Exploration of the Eucalyptus globulus gene pool. In N. Borralho, J. S. Pereira, C. Marques, J. Coutinho, M. Madeira, & M. Tomé (Eds.), Eucalyptus in a changing world—IUFRO conference (pp. 46–61). Aveiro: RAIZ, Instituto Investigação de Floresta e Papel.

    Google Scholar 

  • Pyšek, P., Lambdon, P. W., Arianoutsou, M., Kühn, I., Pino, J., & Winter, M. (2009). Alien vascular plants of Europe. In Handbook of alien species in Europe (pp. 43–61). Dordrecht: Springer Netherlands.

    Google Scholar 

  • R Core Team. (2014). R: a language and environment for statistical computing. http://www.R-project.org.

  • Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107.

    Article  Google Scholar 

  • Richardson, D. M., & Rejmánek, M. (2011). Trees and shrubs as invasive alien species—a global review. Diversity and Distributions, 17, 788–809. doi:10.1111/j.1472-4642.2011.00782.x.

    Article  Google Scholar 

  • Ridgeway, G. (2009). R package gbm: generalized boosted regression models. https://cran.r-project.org/. Accessed Jan 2016.

  • Rousselet, J., Imbert, C.-E., Dekri, A., Garcia, J., Goussard, F., Vincent, B., et al. (2013). Assessing species distribution using Google Street View: a pilot study with the pine processionary moth. PloS One, 8(10), e74918. doi:10.1371/journal.pone.0074918.

    Article  CAS  Google Scholar 

  • Santos, P., Matias, H., Deus, E., Águas, A., & Silva, J. S. (2015). Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecology, 216(12), 1611–1621. doi:10.1007/s11258-015-0544-y.

    Article  Google Scholar 

  • Shuster, W. D., Herms, C. P., Frey, M. N., Doohan, D. J., & Cardina, J. (2005). Comparison of survey methods for an invasive plant at the subwatershed level. Biological Invasions, 7, 393–403. doi:10.1007/s10530-004-3904-4.

    Article  Google Scholar 

  • Silva, J. S., & Marchante, H. (2012). Post-fire management of exotic forests. In F. Moreira, M. Arianoutsou, P. Corona, & J. D. l. Heras (Eds.), Post-fire management and restoration of Southern European forests (vol. 24, pp. 223–255, Managing Forest Ecosystems). Dordrecht: Springer.

  • Sladonja, B., Sušek, M., & Guillermic, J. (2015). Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environmental Management, 56(4), 1009–1034. doi:10.1007/s00267-015-0546-5.

    Article  Google Scholar 

  • Stohlgren, T. J., Bull, K. A., & Otsuki, Y. (1998). Comparison of rangeland vegetation sampling techniques in the central grasslands. Journal of Range Management, 51(2), 164–172.

    Article  Google Scholar 

  • Stoneman, G. L. (1994). Ecology and physiology of establishment of eucalypt seedlings from seed: a review. Australian Forestry, 57(1), 11–29. doi:10.1080/00049158.1994.10676109.

    Article  Google Scholar 

  • Taylor, K., Brummer, T., Taper, M. L., Wing, A., & Rew, L. J. (2012). Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Diversity and Distributions, 18(9), 1–10. doi:10.1111/j.1472-4642.2012.00926.x.

    Article  Google Scholar 

  • Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R. E. (2010). National forest inventories: pathways for common reporting. Netherlands: Springer.

    Book  Google Scholar 

  • Trenberth, K. E. (1983). What are the seasons? Bulletin of the American Meteorological Society, 64(11), 1276–1282. doi:10.1175/1520-0477(1983)064<1276:WATS>2.0.CO;2.

    Article  Google Scholar 

  • Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30. doi:10.1046/j.1523-1739.2000.99084.x.

    Article  Google Scholar 

  • van Wilgen, B. W., Dyer, C., Hoffmann, J. H., Ivey, P., Le Maitre, D. C., Moore, J. L., et al. (2011). National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Diversity and Distributions, 17(5), 1060–1075. doi:10.1111/j.1472-4642.2011.00785.x.

    Article  Google Scholar 

  • Velikova, V., Loreto, F., Brilli, F., Stefanov, D., & Yordanov, I. (2008). Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids. Plant Biology, 10(1), 55–64. doi:10.1055/s-2007-964964.

    Article  CAS  Google Scholar 

  • Vicente, J., Alves, P., Randin, C., Guisan, A., & Honrado, J. (2010). What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography, 33, 1081–1092. doi:10.1111/j.1600-0587.2010.6380.x.

    Article  Google Scholar 

  • Visser, V., Langdon, B., Pauchard, A., & Richardson, D. M. (2014). Unlocking the potential of Google Earth as a tool in invasion science. Biological Invasions, 16, 513–534. doi:10.1007/s10530-013-0604-y.

    Article  Google Scholar 

  • von der Lippe, M., Bullock, J. M., Kowarik, I., Knopp, T., & Wichmann, M. (2013). Human-mediated dispersal of seeds by the airflow of vehicles. PloS One, 8(1), e52733. doi:10.1371/journal.pone.0052733.

    Article  Google Scholar 

  • Wilcox, D. A. (1989). Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environmental Management, 13(3), 365–370. doi:10.1007/BF01874916.

    Article  Google Scholar 

  • Wilson, K. A., Underwood, E. C., Morrison, S. A., Klausmeyer, K. R., Murdoch, W. W., Reyers, B., et al. (2007). Conserving biodiversity efficiently: what to do, where, and when. PLoS Biology, 5(9), e223. doi:10.1371/journal.pbio.0050223.

    Article  Google Scholar 

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (statistics for biology and health). New York: Springer.

Download references

Acknowledgments

This research was funded by Fundação para a Ciência e a Tecnologia (FCT) in the frame of project “WildGum—a multi-scale approach to study the naturalization of blue gum (Eucalyptus globulus Labill.) in Portugal” (FCT PTDC/AGR-FOR/2471/2012); E.D. was supported by a doctoral grant (PB/BD/113936/2015); F.X.C. was supported by a postdoctoral grant (SFRH/BPD/93373/2013); and FM was funded by the REN Biodiversity Chair and FCT (IF/01053/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Deus.

Electronic supplementary material

ESM 1

(PDF 34.5 KB)

ESM 2

(PDF 315 KB)

ESM 3

(PDF 47.0 KB)

ESM 4

(PDF 24.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deus, E., Silva, J.S., Catry, F.X. et al. Google Street View as an alternative method to car surveys in large-scale vegetation assessments. Environ Monit Assess 188, 560 (2016). https://doi.org/10.1007/s10661-016-5555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5555-1

Keywords

Navigation