Skip to main content

Advertisement

Log in

Catchment land use as a predictor of the macroinvertebrate community changes between inlet and outlet of small water dams

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in land use practices have affected the integrity and the quality of stream water worldwide. Effective catchment management, in terms of land use alteration, depends on our ability to quantify ecologically significant changes and to discriminate among varying levels of impact. In this study, we assessed the structural and functional changes upstream and downstream of eight small water reservoirs in western Slovakia and the relationship between these changes and shifts in physicochemical parameters as a consequence of stream damming and catchment land use. Dams were categorized into two groups, the first with both inlet and outlet situated in deforested and agricultural landscape and the second with inlet flowing through natural and forested landscape, while outlet is situated in deforested and urban region. Using a “between-groups” principal components analysis and a “between-groups” fuzzy principal components analysis, we found significant differences in structural and functional composition of macroinvertebrate communities between inlets with forested catchment and outlets flowing through agricultural, urban landscape. The structural dissimilarity is best explained by the physicochemical and biological characteristics of the aquatic environment, while functional variation of communities is best explained by land use of an area surrounding the stream. The distance in structural and functional community composition between inlet and outlet was linked with difference in environmental conditions between these habitats. The change of structural community composition significantly reflected shift in the water temperature and phosphorus concentration, while the change of functional community composition was determined by change of nutrient concentrations (e.g., PO4, NO3, NH4) and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aazami, J., Esmaili Sari, A., Abdoli, A., Sohrabi, H., & Van den Brink, P. J. (2015). Assessment of ecological quality of the Tajan River in Iran using a multimetric macroinvertebrate index and species traits. Environmental Management, 56(1), 260–269.

    Article  Google Scholar 

  • Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Bady, P., Dolédec, S., Fesl, C., Bacchi, M., Gayraud, S., & Scholl, F. (2005). Invertebrate traits for the biomonitoring of large European rivers: sampling efforts to assess taxa richness or functional diversity. Freshwater Biology, 50, 159–173.

    Article  Google Scholar 

  • Bauernfeind, E., & Humpesch, U. H. (2001). Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie. Wien: Verlag des Naturhistorischen Museums.

    Google Scholar 

  • Bazzanti, M., Bella, V. D., & Grezzi, F. (2009). Functional characteristics of macroinvertebrate communities in Mediterranean ponds (Central Italy): influence of water permanence and mesohabitat type. Annales de Limnologie, 45, 29–39.

    Article  Google Scholar 

  • Beche, L. A., McElravy, E. P., & Resh, V. H. (2006). Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean climate streams in California, U.S.a. Freshwater Biology, 51, 56–75.

    Article  Google Scholar 

  • Benstead, J. P., March, J. G., & Pringle, C. M. (2000). Estuarine larval development and upstream post-larval migration of freshwater shrimps in two tropical rivers of Puerto Rico. Biotropica, 32, 545–548.

    Google Scholar 

  • Brasher, A. M. D. (2003). Impacts of human disturbances on biotic communities in Hawaiian streams. Bioscience, 53, 1052–1060.

    Article  Google Scholar 

  • Buchar, J., Ducháč, V., & Lellák, J. (1995). Klíč k určování bezobratlých. Praha: Scienta.

    Google Scholar 

  • Bunn, S. E., Davies, P. M., & Mosisch, T. D. (1999). Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology, 41, 333–345.

    Article  Google Scholar 

  • Camargo, J. A., Alonso, A., & de la Puente, M. (2005). Eutrophication downstream from small reservoirs in mountain rivers of central Spain. Water Research, 39, 3376–3384.

    Article  CAS  Google Scholar 

  • Charvet, S., Statzner, B., Usseglio-Polatera, P., & Dumont, B. (2000). Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshwater Biology, 43, 277–296.

    Article  Google Scholar 

  • Chatzinikolaou, Y., Dakos, V., & Lazaridou, D. (2006). Longitudinal impacts of anthropogenic pressures on benthic macroinvertebrate assemblages in a large transboundary Mediterranean river during the low flow period. Acta Hydrochimica et Hydrobiologica, 34, 453–463.

    Article  CAS  Google Scholar 

  • Chevenet, F., Dolédec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309.

    Article  Google Scholar 

  • Collier, M., Webb, R. H., & Schmidt, J. C. (1996). Dams and rivers—primer on the downstream effects of dams. Denver: U.S. Geological Survey.

    Google Scholar 

  • Delong, M. D., & Brusven, M. A. (1998). Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environmental Management, 22, 445–457.

    Article  Google Scholar 

  • Dolédec, S., & Chessel, D. (1989). Rythmes saisonniers et composantes stationnelles en milieu aquatique. Il - Prise en compte et élimination d’effets dans un tableau faunistique. Acta Œcologica, Œcologia Generalis, 10(3), 207–232.

    Google Scholar 

  • Dolédec, S., & Chessel, D. (1994). Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology, 31, 277–294.

    Article  Google Scholar 

  • Dolédec, S., Phillips, N., Scarsbrook, M., Riley, R. H., & Townsend, C. R. (2006). Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society, 25(1), 44–60.

    Article  Google Scholar 

  • Dolédec, S., Statzner, B., & Bournard, M. (1999). Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology, 42, 737–758.

    Article  Google Scholar 

  • Donohue, I., Jackson, A. L., Pusch, M. T., & Irvine, K. (2009). Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology, 90, 3470–3477.

    Article  Google Scholar 

  • Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.

    Article  Google Scholar 

  • ESRI (2011). ArcGIS desktop: release 10. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  • Foucart, T. (1978). Sur les suites de tableaux de contingence indexés par le temps. Statistique et Analyse des données, 2, 67–84.

    Google Scholar 

  • Freedman, J. A., Carline, R. F., & Stauffer, J. R. (2013). Gravel dredging alters diversity and structure of riverine fish assemblages. Freshwater Biology, 58, 261–274.

    Article  CAS  Google Scholar 

  • Fruget, J. F., Jézéquel, C., Archambaud, G., Dessaix, J., & Roger, M. C. (2015). Long-term effects of global and local changes on benthic macroinvertebrate communities in multi-stressed large rivers: the example of the Rhône River during the last 30 years. Knowledge and Management of Aquatic Ecosystems, 416, 29.

    Article  Google Scholar 

  • Glöer, P., & Meier-Brook, C. (2003). Süsswassermollusken (Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland). Hamburg: Deutscher Jugendbund für Naturbeobachtung.

    Google Scholar 

  • Goetz, S., & Fiske, G. (2008). Linking the diversity and abundance of stream biota to landscapes in the mid-Atlantic USA. Remote Sensing of Environment, 112, 4075–4085.

    Article  Google Scholar 

  • Hershey, A. E., & Lamberti, G. A. (1998). Stream macroinvertebrate communities. In R. J. Naiman & R. E. Bilby (Eds.), River ecology and management (pp. 165–195). New York: Springer.

    Google Scholar 

  • Hochman, L., Kováčik, Ľ., Nemcová, I., Šporka, F., Štefková, E., & Tomajka, J. (1988). Limnological characteristics of irrigation reservoirs in southwestern Slovakia (ČSSR). Práce Úst. Rybár. Hydrobiol., 6, 139–180.

    Google Scholar 

  • Holcomb, J. M. (2013). The effects of low-head dams and land use change on North Carolina Atlantic slope fish community. Boone, North Carolina: Master thesis, Appalachian State University.

    Google Scholar 

  • Horsák, M. (2003). How to sample mollusk communities in mires easily. Malacologica Bohemoslovaca, 22, 11–14.

    Google Scholar 

  • Hrbáček, J. (1972). Limnologické metody (Limnology Methods). Praha: SPN.

    Google Scholar 

  • ICOLD (2016). Small dams design, surveillance and rehabilitation. Bulletin 157. Committee on Small Dams, International Commission on Large Dams (ICOLD), Paris

  • Illyová, M., & Pastuchová, Z. (2012). The zooplankton comunities in small water reserviors with different conditions in two catchments. Limnologica, 7(8), 271–281.

    Article  Google Scholar 

  • Jones, P. D., Osborn, T. J., & Briffa, K. R. (2001). The evolution of climate over the last millennium. Science, 292, 662–667.

    Article  CAS  Google Scholar 

  • Kasangaki, A., Chapman, L. J., & Balirwa, J. (2008). Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshwat. Biol., 53, 681–697.

    Article  Google Scholar 

  • Katano, I., Negishi, J. N., Minagawa, T., Doi, H., Kawaguchi, Y., & Kayaba, Y. (2009). Longitudinal macroinvertebrate organization over contrasting discontinuities: effects of a dam and a tributary. Journal of the North American Benthological Society, 28(2), 331–351.

    Article  Google Scholar 

  • Klementová, E., & Juráková, M. (2003). Wetlands in the flood control system. Životní prostředí, 37, 200–203.

    Google Scholar 

  • Krno, I. (2013). Pošvatky (Plecoptera): Determinačný kľúč pre hydrobiológov. Bratislava: Výskumný ústav vodného hospodárstva.

    Google Scholar 

  • Krno, I., & Derka, T. (2011). Determinačný kľúč pre hydrobiológov. Bratislava: Výskumný ústav vodného hospodárstva.

    Google Scholar 

  • Krzanowski, W. J. (1979). Between-groups comparison of principal components. Journal of the American Statistical Association, 74(367), 703–707.

    Article  Google Scholar 

  • Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version, 1, 0–12.

    Google Scholar 

  • Lehmkuhl, D. M. (1972). Change in thermal regime as a cause of reduction of benthic fauna downstream of a reservoir. Journal of the Fisheries Research Board of Canada, 29(9), 1329–1332.

    Article  Google Scholar 

  • Lenat, D. R., & Crawford, J. K. (1994). Effects of land use on water quality and aquatic biota of three North Carolina piedmont streams. Hydrobiologia, 294, 185–199.

    Article  Google Scholar 

  • Lichstein, J. W. (2007). Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology, 188, 117–131.

    Article  Google Scholar 

  • Ložek, V. (1956). Klíč československých měkkýšů. Bratislava: Vyd. Slov. akad. vied.

    Google Scholar 

  • Maloney, K., Munguia, P., & Mitchell, R. (2011). Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. Journal of the North American Benthological Society, 30, 284–295.

    Article  Google Scholar 

  • Martínez, A., Larrañaga, A., Basaguren, A., Pérez, J., Mendoza-Lera, C., & Pozo, J. (2013). Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia, 711, 31–42.

    Article  Google Scholar 

  • McCormick, P. V., Shuford, R. B. E., & Rawlik, P. S. (2004). Changes in macroinvertebrate community structure and function along a phosphorus gradient in the Florida everglades. Hydrobiologia, 529, 113–132.

    Article  Google Scholar 

  • McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenisation: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14, 450–453.

    Article  Google Scholar 

  • Mueller, M., Pander, J., & Geist, J. (2011). The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology, 48(6), 1450–1461.

    Article  Google Scholar 

  • Mulholland, P. J., Fellows, C. S., Tank, J. L., Grimm, N. B., Webster, J. R., Hamilton, S. K., Martí, E., Ashkenas, L., Bowden, W. B., Dodds, W. K., McDowell, W. H., Paul, M. J., & Peterson, B. J. (2001). Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology, 46, 1503–1517.

    Article  CAS  Google Scholar 

  • Naiman, R. J., Magnuson, J. J., McKnight, D. M., & Stanford, J. A. (1995). The freshwater imperative: a research agenda. Washington D.C.: Island Press.

    Google Scholar 

  • Neubert, E., & Nesemann, H. (1999). Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea. Berlin: Spektrum Akademischer Verlag GmbH Heidelberg.

    Google Scholar 

  • Norkko, A., Rosenberg, R., Thrush, S. F., & Whitlatch, R. B. (2006). Scale- and intensity-dependent disturbance determines the magnitude of opportunistic response. Journal of Experimental Marine Biology and Ecology, 330, 195–207.

    Article  Google Scholar 

  • Oksanen, J., Blanchett, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. M., & Wagner H. (2012). Vegan: community Ecology Package. R Package 2.0.3, //CRAN.R-project.org/package=vegan.

  • Olden, J. D., & Rooney, T. P. (2006). On defining and quantifying biotic homogenization. Global Ecology and Biogeography, 15, 113–120.

    Article  Google Scholar 

  • Palmer, R. W., & O’Keeffe, J. H. (1990). Downstream effect of impoundments on the water chemistry of the Buffalo River (eastern cape), South Africa. Hydrobiologia, 202, 71–83.

    Article  CAS  Google Scholar 

  • Petts, G. E. (1984). Impounded rivers: perspectives for ecological management. Chichester: John Wiley & Sons.

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Core Team, R. (2016). nlme: linear and nonlinear mixed effects models. R package version, 3, 1–124 http://CRAN.R-project.org/package=nlme.

    Google Scholar 

  • Poff, N. L., & Hart, D. D. (2002). How dams vary and why it matters for the emerging science of dam removal. Bioscience, 52, 659–668.

    Article  Google Scholar 

  • Poff, N. L., Olden, J. D., Merritt, D., & Pepin, D. (2007). Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academcy of Sciences, 104(14), 5732–5737.

    Article  CAS  Google Scholar 

  • Poff, N. L., Pyne, M. I., Bledsoe, B. P., Cuhaciyan, C. C., & Carlisle, D. M. (2010). Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. Journal of the North American Benthological Society, 29, 1441–1458.

    Article  Google Scholar 

  • Pool, T. K., & Olden, J. D. (2012). Taxonomic and functional homogenization of a globally endemic desert fish fauna. Diversity and Distributions, 18, 366–376.

    Article  Google Scholar 

  • Quinn, J. M. (2000). Effects of pastoral development. In K. J. Collier & M. J. Winterbourn (Eds.), New Zealand stream invertebrates: ecology and implications for management (pp. 208–229). Christchurch: Caxton Press.

    Google Scholar 

  • Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: University Press.

    Book  Google Scholar 

  • R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Radomski, P. J., & Goeman, T. J. (1995). The homogenizing of Minnesota lake fish assemblages. Fisheries, 20, 20–23.

    Article  Google Scholar 

  • Rahel, F. J. (2002). Homogenisation of freshwater faunas. Annual Review of Ecology and Systematics, 33, 291–315.

    Article  Google Scholar 

  • Rahel, F. J. (2007). Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology, 52, 696–710.

    Article  Google Scholar 

  • Rozkošný, R. (1980). Klíč vodních larev hmyzu. Praha: Academia.

    Google Scholar 

  • Santucci, V. J., Gephard, S. R., & Pescitelli, S. M. (2005). Effects of multiple low-head dams on fish, macroinvertebrates, habitat, and water quality in the Fox River, Illinois. North American Journal of Fisheries Management, 25, 975–992.

    Article  Google Scholar 

  • Schmidt-Klobier, A., & Hering, D. (2015). An online tool that unifies, standardizes and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators, 53, 271–282 www.freshwaterecology.info.

    Article  Google Scholar 

  • Southwood, T. R. E. (1988). Tactics, strategies and templets. Oikos, 52, 3–18.

    Article  Google Scholar 

  • Sponseller, R. A., Benfield, E. F., & Valett, H. M. (2001). Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology, 46, 1409–1424.

    Article  Google Scholar 

  • Šporka, F. (Ed.) (2003). Slovak aquatic macroinvertebrates, checklist and catalogue of autecological notes II (in slovak). Bratislava: Slovak hydrometeorological institute.

  • Statzner, B., & Bêche, L. A. (2010). Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology, 55(1), 80–119.

    Article  Google Scholar 

  • Statzner, B., Bis, B., Doledec, S., & Usseglio-Polatera, P. (2001). Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition on invertebrate communities in European running waters. Basic and Applied Ecology, 2, 73–85.

    Article  Google Scholar 

  • Statzner, B., Hoppenhaus, K., Arens, M. F., & Richoux, P. (1997). Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. Freshwater Biology, 38, 109–135.

    Article  Google Scholar 

  • Sundermann, A., Lohse, S., Beck, L. A., & Haase, P. (2007). Key to the larval stages of aquatic true flies (Diptera), based on the operational taxa list for running waters in Germany. Ann. Limnol. – Int. J. Lim., 43(1), 61–74.

    Article  Google Scholar 

  • Szalinska, E. (2010). Reservoirs as a trap for pollutants: the Czorsztyn reservoir. Terre et Environnement, 88, 205–209.

    Google Scholar 

  • Thrush, S. F., & Whitlatch, R. B. (2001). Recovery dynamics in benthic communities: balancing detail with simplification. In K. Reise (Ed.), Ecological comparisons of sedimentary shores (pp. 297–316). Berlin: Springer.

    Chapter  Google Scholar 

  • Timm, T. (2009). A guide to the freshwater Oligochaeta and Polychaeta of northern and central Europe. Lauterbornia, 66, 1–235.

    Google Scholar 

  • VandeWalle, M., de Bello, F., Berg, M. P., Bolger, T., Dolédec, S., Dubs, F., Feld, C. K., Harrington, R., Harrison, P. A., Lavorel, S., Martins da Silva, P., Moretti, M., Niemela, J., Santos, P., Sattler, T., Sousa, P. J., Sykes, M. T., Vanbergen, A. J., & Woodcock, B. A. (2010). Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity Conservation, 19, 2921–2947.

    Article  Google Scholar 

  • Vannote, R. L., & Sweeney, B. W. (1980). Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist, 115, 667–695.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • von Schiller, D., Martí, E., Riera, J. L., Ribot, M., Argerich, A., Fonollá, P., & Sabater, F. (2008). Inter-annual, annual, and seasonal variation of P and N retention in a perennial and an intermittent stream. Ecosystems, 11, 670–687.

    Article  Google Scholar 

  • Wallace, J. B., & Anderson, N. H. (1995). Habitat, life-history, and behavioral adaptations of aquatic insects. In R. W. Merritt & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 41–73). Dubuque: Kendall/Hunt.

    Google Scholar 

  • Ward, J. V. (1985). Thermal characteristics of running waters. Hydrobiologia, 125, 31–46.

    Article  Google Scholar 

  • Ward, J. V., & Stanford, J. A. (1979). Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams. In J. V. Ward & J. A. Stanford (Eds.), The ecology of regulated streams (pp. 35–56). New York: Plenum Press.

    Chapter  Google Scholar 

  • Ward, J. V., & Stanford, J. A. (1983). The serial discontinuity concept of lotic ecosystems. In T. D. Fontaine & S. M. Bartell (Eds.), Dynamics of lotic ecosystems (pp. 29–42). Michigan: Ann Arbor Science Publishers.

    Google Scholar 

  • WCD (2000). Dams and development: a new framework for decision making. The report of the world commission on dams. London and Sterling: Earthscan Publishing Ltd.

    Google Scholar 

  • Young, R. G., & Huryn, A. D. (1999). Effects of land use on stream metabolism and organic matter turnover. Ecological Applications, 9, 1359–1376.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of the projects team, mainly to Marta Illyová and Tomáš Čejka for the help during the field sampling and sample identification. The study was supported by the project SAV-FM-EHP-2008-03-04 and partly by VEGA no. 1/0056/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beracko Pavel.

Appendix

Appendix

Table 10 Relative abundance (%) of benthic taxa in the inlets/outlets of the eight water dams

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavel, B., Alexandra, R., Fedor, Č. et al. Catchment land use as a predictor of the macroinvertebrate community changes between inlet and outlet of small water dams. Environ Monit Assess 188, 550 (2016). https://doi.org/10.1007/s10661-016-5552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5552-4

Keywords

Navigation