Skip to main content

Climate change in Lagos state, Nigeria: what really changed?

Abstract

Our study revealed periodicities of 2.3 and 2.25 years in wet and dry seasons and periodicities of 2 to 5 years on seasonal and annual timescales. Minimum temperature (Tmin), maximum temperature (Tmax) and evaporation recorded increases of 2.47, 1.37 and 28.37 %, respectively, but a reduction of 19.58 % in rainfall on decadal timescale. Periodicity of 8 to 12 years was also observed in annual Tmax. Cramer’s test indicated a warming trend with significant Tmax increase in February, April, July, August, October and November during 2000–2009 on decadal monthly timescale, a significant decline in Summer rainfall but significant Tmax increase in Spring, Autumn and Winter on decadal seasonal timescale. The low correlation of rainfall with temperature parameters and evaporation indicates that advection of moisture into Lagos State seems to be the dominant mechanism controlling rainfall within the State alongside other tropical and extra-tropical factors. In addition, our study revealed that the persistent state of minimum temperature often precedes the arrival and reversal of the phase of maximum temperature. Furthermore, our study also revealed that extreme and high variable rainfalls, which are associated with the increased warming trend, had periodicities of 1 to 3 years with a probability of 86.45 % of occurring every 3 years between April and September. It is recommended that government and private sector should give financial and technical supports to climate researches in order to appropriately inform policy making to improve the adaptive capacity and resilience of Lagos State against climate change impacts and guard against maladaptation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

References

  • Abaje, I. B., Ndabula, C., & Garba, A. H. (2014). Is the changing rainfall patterns of Kano Stateand its adverse effects an indication of climate change? European Scientific Journal, 10(2), 192–206.

    Google Scholar 

  • Abolade, O., Muili, A. B., & Ikotun, S. A. (2013). Impacts of flood disaster in Agege local government area Lagos, Nigeria. International Journal of Development & Sustainability, 2(4), 2354–2367.

    Google Scholar 

  • Adakayi, P. E. (2012). An assessment of rainfall and temperature variations in selected stations in parts of Northern Nigeria [internet]. PhD Thesis, University of Jos, Nigeria [cited 2016 August 7]. http://irepos.unijos.edu.ng/jspui/bitstream/123456789/186/1/An%20Assesment%20of%20the%20Rainfall.pdf. Accessed 10 March 2016.

  • Addisu, S., Selassie, Y. G., Fisha, G., & Gedif, B. (2015). Time series trend analysis of temperature and rainfall in Lake Tana sub-basin, Ethiopia. Environmental Systems Research, 4(25), 1–12. doi:10.1186/s40068-015-0051-0.

    Google Scholar 

  • Adegoke, C. W., & Sojobi, A. O. (2015). Climate change impact on infrastructure in Osogbo metropolis, Southwest Nigeria. Journal of Emerging Trends in Engineering & Applied Sciences, 6(3), 156–165.

    Google Scholar 

  • Adejobi, O. S., & Olorunnimbe, R. O. (2012). Challenges of waste management and climate change in Nigeria: Lagos state metropolis experience. African Journal of Scientific Research, 7(1), 346–362.

    Google Scholar 

  • Adelekan, I. O. (2010). Vulnerability of poor urban coastal communities to flooding in Lagos, Nigeria. Environment & Urbanization, 22, 433–450.

    Article  Google Scholar 

  • Adeoti, A. I., Olayide, O. E., & Corster, A. S. (2010). Flooding and welfare of fishers’ households in Lagos state, Nigeria. Journal of Human Ecology, 32(3), 161–167.

    Google Scholar 

  • Aderogba, K. A. (2012a). Qualitative studies of recent floods and sustainable growth and development of cities and towns in Nigeria. International Journal of Academic Research in Economics and Management Sciences, 1(3), 1–25.

    Google Scholar 

  • Aderogba, K. A. (2012b). Global warming and challenges of floods in Lagos metropolis, Nigeria. Academic Research International, 2(1), 448–468.

    Google Scholar 

  • Aderogba, K., Oredipo, M., Oderinde, S., & Afelumo, T. (2012c). Challenges of poor drainage systems and floods in Lagos metropolis, Niegria. International Journal of Social Science & Education, 2(3), 412–427.

    Google Scholar 

  • Aigbe, G. O., Ogundele, F. O., & Aliu, I. R. (2012). Road facility and maintenance in Lagos state, Nigeria. British Journal of Arts & Social Sciences, 4(2), 135–149.

    Google Scholar 

  • Ajibade, I., McBean, G., & Bezner-Kerr, R. (2013). Urban flooding in Lagos, Nigeria: patterns of vulnerability and resilience among women. Global Environmental Change, 23(6), 1714–1725.

    Article  Google Scholar 

  • Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperature variability over Nigeria. Global journal of human-social sciences: B, geography, geo-sciences. Environmental Disaster Management, 14(3) 1, 1–18.

    Google Scholar 

  • Alberto, M. C. R., Hirano, T., Miyata, A., Wassmann, R., Kumar, A., Padre, A., & Amante, M. (2012). Influence of climate variability on seasonal and interannual variations of ecosystem CO2 exchange in flooded and non-flooded rice fields in the Philippines. Field Crops Research, 134, 80–94.

    Article  Google Scholar 

  • Aledare, K. D., Olayiwola, K. O., & Olaseni, A. M. (2014). Climate change awareness among residents of Lagos Island, Nigeria. American Journal of Social Issues & Humanities, 4(1), 12–25.

    Google Scholar 

  • Amadi, S. O., & Chigbu, T. O. (2014). Trends and variations of some meteorological parameters in Uyo, Nigeria. International Journal of Pure and Applied Sciences and Technology, 25(2), 36–45.

    Google Scholar 

  • Amos, E., Akpan, U., Ogunjobi, K. (2014). Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom State, Nigeria. Environment, Development & Sustainability. http://rd.springer.com/article/10.1007/s10668-014-9580-3.

  • Antwi, E. K., Boakye-Danquah, J., Owusu, A. B., Loh, S. K., Mensah, R., Boafo, Y. A., & Apronti, P. T. (2015). Community vulnerability assessment index for flood prone savannah agro-ecological zone: a case study of Wa West District, Ghana. Weather & Climate Extremes, 10, 56–69.

    Article  Google Scholar 

  • Arias, M. E., Cochrane, T. A., Piman, T., Kummu, M., Caruso, B. S., & Killeen, T. J. (2012). Quantifying changes in flooding and habitats in the Tonle sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin. Journal of Environmental Management, 112, 53–66.

    Article  Google Scholar 

  • Arnes, E., Antonio, J., Del Val, E., & Astier, M. (2013). Sustainability and climate variability in low-input peasant maize systems in the central Mexican highland. Agriculture, Ecosystems and Environment, 181, 195–205.

    Article  Google Scholar 

  • Atedhor, G. O., Odjugo, P. A. O., & Uriri, A. E. (2011). Changing rainfall and anthropogenic-induced flooding: impacts and adaptation strategies in Benin City. Nigerian Journal of Geography & Regional Planning, 4(1), 42–52.

    Google Scholar 

  • Balogun, I. I., Sojobi, A. O., & Oyedepo, B. O. (2016). Assessment of rainfall variability, rainwater harvesting potential and storagerequirements in Odeda local government area of Ogun state in southwestern Nigeria. Cogent Environmental Science, 2, 1138597. doi:10.1080/23311843.2016.1138597.

    Article  Google Scholar 

  • Barbier, E. B. (2015). Climate change impacts on rural poverty in low-elevation coastal zones. Estuarine, Coastal and Shelf Science, 165, A1–A13.

    Article  Google Scholar 

  • Bellprat, O., Lott, F. C., Guliza, C., Parker, H. R., Pampuch, L. A., Pinto, I., Ciavarella, A., & Stott, P. A. (2015). Unusual past dry and wet rainy seasons over southern Africa and South America from a climate perspective. Weather and Climate Extreme, 9, 36–46.

    Article  Google Scholar 

  • Bluman, A. G. (2013). Elementary statistics. A step by step approach. New York: McGraw-Hill.

    Google Scholar 

  • Boberg, F., & Christensen, J. H. (2012). Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nature Climate Change, 2, 433–436. doi:10.1038/nclimate1454.

    Article  Google Scholar 

  • Boyd, E., Cornforth, R. J., Lamb, P. J., Tarhule, A., Lele, M. I., & Brouder, A. (2013). Building resilience to face recurring environmental crisis in African Sahel. Nature Climate Change, 3, 631–637. doi:10.1038/nclimate1856.

    Google Scholar 

  • Briciu, A.-E., & Mihaila, D. (2014). Wavelet analysis of some rivers in SE Europe and selected climate indices. Environmental Monitoring and Assessment, 186(10), 6263–6286.

    Article  Google Scholar 

  • BRNCC (2012). Towards Lagos State climate change adaptation strategy. Building Nigeria’s Response to Climate Change.

  • Bronstert, A. (2003). Floods and climate change: interactions and impacts. Risk Analysis, 23(3), 545–557.

    Article  Google Scholar 

  • Brown, A. (2015). Climate change and Africa. Nature Climate Change, 5, 811.

    Article  Google Scholar 

  • Brown, C., & Lall, B. (2006). Water and economic development: the role of variability and a framework for resilience. Natural Resources Forum, 30, 306–317.

    Article  Google Scholar 

  • Buishand, T. A., & Brandsma, T. (1999). Dependence of precipitation on temperature at Florence and Livorno (Italy). Climate Research, 12, 53–63.

    Article  Google Scholar 

  • Burn, D. H., Sharif, M., & Zhang, K. (2010). Detection of trends in hydrological extremes for Canadian watersheds. Hydrological Processes, 24(13), 1781–1790.

    Article  Google Scholar 

  • Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPahden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., & Jin, F.-F. (2014). Increasing frequency of extreme El Nino events due to greenhouse warming. Nature Climate Change, 4, 111–116.

    CAS  Article  Google Scholar 

  • Cai, W., Wang, Santoso, A., McPhaden, Wu, L., Jin, F.-F., Timmermann, A., Collins, M., Vecchi, G., Lengayne, M., England, M. H., Dommenget, D., Takahashi, K., & Guilyardi, E. (2015). Increased frequency of extreme La Nina events under greenhouse warming. Nature Climate Change, 5, 132–137.

    Article  Google Scholar 

  • Cao, L., Pan, S., Wang, Q., Wang, Q., & Xu, W. (2014). Changes in extreme wet events in Southwestern China in 1960-2011. Quarternary International, 321, 116–124.

    Article  Google Scholar 

  • Chadwick, R., Good, P., Martin, P., & Rowell, D. P. (2015). Large rainfall changes consistently projected over substantial areas of tropical land. Nature Climate Change. doi:10.1038/nclimate2805.

    Google Scholar 

  • Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4, 287–291. doi:10.1038/nclimate2153.

    Article  Google Scholar 

  • Chen, Y. D., Zhang, Q., Xu, C. Y., Lu, X., & Zhang, S. (2010). Multiscale streamflow variations of the Pearl River basin and possible implications for the water resource management within the Pearl River Delta, China. Quaternary International, 226, 44–53.

    Article  Google Scholar 

  • Chen, Z., Chen, Y., & Li, B. (2013). Quantifying the effects of climate variability and human activities on runoff for Kaidu River basin in arid region of Northwest China. Theoretical & Applied Climatology, 111(3), 537–545.

    Article  Google Scholar 

  • Climate & Development Knowledge Network (2012). Managing climate extremes and disasters in Africa: Lessons from the IPCC SREX Report. CDKN. www.cdkn.org/srex. Accessed 10 March 2016.

  • Conway, D., Van Garderen, E. A., Deryng, D., Dorling, S., Krueger, T., Landman, W., Lankford, B., Lebek, K., Osborn, T., Ringler, C., Thurlow, J., Zhu, T., & Dalin, C. (2015). Climate and southern Africa’s water-energy-food nexus. Nature Climate Change, 5, 837–846. doi:10.1038/nclimate2735.

    Article  Google Scholar 

  • Costa, M. H., & Foley, J. A. (1999). Trends in the hydrologic cycle of the Amazon basin. Journal of Geophysical Research, 104(12), 14189–14198.

    Article  Google Scholar 

  • Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2, 491–496.

    Google Scholar 

  • Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58. doi:10.1038/nclimate1633.

    Article  Google Scholar 

  • Dalil, M., Mohammed, N. H., Yamman, U. M., Husaini, A., & Mohammed, S. L. (2015). An assessment of flood vulnerability on physical planning development along drainage channels in Minna, Niger state, Nigeria. African Journal of Environmental Science & Technology, 9(1), 38–46.

    Article  Google Scholar 

  • Dankers, R., Hiedener, R. (2008). Extreme temperatures and precipitation in Europe: analysis of a high resolution climate change scenario [internet]. European Communities, Luxembourg. http://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR23291EN.pdf. Accessed 8 August 2011.

  • Daramola, A.Y., Timothy, O. O, Ogundele, O, & Adesanya, A. (2016). Adaptive capacity and coping response strategies to natural disasters: a study in Nigeria. International Journal of Disaster Risk Reduction, 15, 132–147.

  • Demessie, E. T. (2015). Soil hydrological impacts and climatic controls of land use and land cover changes in the upper Blue Nile (Abay) basin. Addis Ababa, Ethiopia: PhD thesis.

    Google Scholar 

  • Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Rose, R., Dunn, R. J. H., & Willett, K. M. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. Journal of Geophysical Research: Atmosperes, 118, 2098–2118.

    Google Scholar 

  • Douglas, I., Alam, K., Maghenda, M., McDonnel, Y., McLean, L., & Campbell (2008). Unjust waters: climate change, flooding and the urban poor in Africa. Environment and Urbanization, 20(1), 187–205.

    Article  Google Scholar 

  • Ede, A. N., & Oshiga, K. (2014). Mitigation strategies for the effects of climate change on road infrastructure in Lagos state. European Scientific Journal, 10(11), 194–208.

    Google Scholar 

  • Eguaroje, O. E., Alaga, T. A., Ogbole, J. O., Omolere, S., Alwadood, J., Kolawole, I. S., Muibi, K. H., Nnaemeka, D., Popoola, D. S., Samson, S. A., Adewoyin, J. E., Jesuleye, I., Badru, R. A., Atijosan, A., & Ajileye, O. O. (2015). Flood vulnerability assessment of Ibadan City, Oyo state, Nigeria. World Environment, 5(4), 149–159.

    Google Scholar 

  • Elias, P., & Omojola, A. (2015). Case study: the challenges of climate change for Lagos, Nigeria. Current Opinion in Environmental Sustainability, 13, 74–78.

    Article  Google Scholar 

  • EPA (2010). Climate change science facts. Downloaded January 26, 2016. Available from http://www3.epa.gov/climatechange/downloads/Climate_Change_Science_Facts.pdf. Accessed 10 March 2016.

  • Esteve, P., Varela-Ortega, C., Blanco-Gutierrez, I., & Downing, T. E. (2015). A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics, 120, 49–58.

    Article  Google Scholar 

  • Fankhauser, S., & McDermott, T. K. J. (2014). Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries? Global Environmental Change, 27, 9–18.

    Article  Google Scholar 

  • Fatile, J. O., Adejobi, O. S., & Olorunnimbe, R. O. (2012). Vulnerability to climate change and conflict in Nigeria. Journal of Social Sciences and Public Policy, 4, 42–83.

    Google Scholar 

  • Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3, 811–815.

    Article  Google Scholar 

  • Filani, M. O. (2012). Changing face of Lagos. From vision to reform and transformation. Brussels: Cities Alliance. Available at www.citiesalliance.org/sites/citiesalliance.org/files/Lagos-reform-report-lowres.pdf. Accessed 10 March 2016.

  • Fischer, E. M., & Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy precipitation and high temperature extremes. Nature Climate Change, 5, 560–564.

    Article  Google Scholar 

  • Francesch-Huidobro, M., Dabrowski, M., Tai, Y., Chan, F., & Stead, D. (2016). Governance challenges of flood-prone delta cities: integrating flood risk management and climate change in spatial planning. Progress in Planning. doi:10.1016/j.progress.2015.11.001 in press.

    Google Scholar 

  • Frei, C., Schöll, R., Fukutome, S., Schmidli, J., & Vidale, P. L. (2006). Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 111, D06105. doi:10.1029/2005JD005965.

    Article  Google Scholar 

  • Gbetibuou, G. A. (2009). Understanding farmers’ perceptions and adaptations to climate change and variability: the case of the Limpopo Basin, South Africa, discussion paper. Washington DC: International Food Policy Research Institute.

    Google Scholar 

  • George, C.K. (2010). Challenges of Lagos as a Mega-city. Available at: http://www.allafrica.com/stories/201002221420.html. Accessed 07 Dec 2010.

  • Ghoneem, M. Y. M. (2016). Planning for climate change, why does it matter? (from phenomenon to integrative action plan). Procedia-Social Sciences and Behavioural Sciences, 216, 675–688.

    Article  Google Scholar 

  • Goodess, C. M. (2013). How is the frequency, location and severity of extreme events likely to change up to 2060? Environmental Science and Policy, 27, S4–S14.

    Article  Google Scholar 

  • Graczyk, D., Pinskwar, I., Kindewicz, Z. W., Hov, O., Forland, E. J., Szwed, M., & Chorynski, A. (2016). The heat goes on-changes in indices of hot extremes in Poland. Theoretical and Applied Climatology. doi:10.1007/s00704-016-1786-x.

    Google Scholar 

  • Hare, F. K. (1983). Climate and desertification. Geneva, Switzerland: Revised analysis (WMO-UNDP) .WCP-44, 5-20

    Google Scholar 

  • Hazeleger, W., vander Hurk, B. J. J. M., van Oldenborgh, G. J., Petersen, A. C., Stainforth, D. A., Vasileiadou, E., & Smith, L. A. (2015). Tales of future weather. Nature Climate Change, 5, 107–113.

    Article  Google Scholar 

  • Hernandez-Delgado, E. A. (2015). The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: cumulative impacts and synergies. Marine Pollution Bulletin, 101(1), 5–28.

    CAS  Article  Google Scholar 

  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821. doi:10.1038/nclimate1911.

    Article  Google Scholar 

  • Hisdal, H., Holmqvist, E., Jonsdottir, J. F., Jonsson, P., Kuusisto, E., Lindstrom, G., & Roald, L. (2010). Has streamflow changed in the Nordic countries? Oslo: Norwegian Water Resources and Energy Directorate.

    Google Scholar 

  • Holgren, M., Hirota, M., Van Nes, E. H., & Scheffer, M. (2013). Effects of interannual climate variability on tropical tree cover. Nature Climate Change, 3, 755–758. doi:10.1038/nclimate1906.

    Article  Google Scholar 

  • Horton, D. E., Skinner, C. B., Singh, D., & Diffenbaugh, N. S. (2014). Occurrence and persistence of future atmospheric stagnation events. Nature Climate Change, 4, 698–703. doi:10.1038/nclimate2272.

    Article  Google Scholar 

  • Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C.-Y., & Leiserowitz, A. (2012). Global perceptions of local temperature change. Nature Climate Change, 3, 352–356. doi:10.1038/nclimate1768.

    Article  Google Scholar 

  • Hu Q., Feng S. (2016). Regional hydrological cycle and weather and climate in the contiguous United States. https://ams.confex.com/ams/pdfpapers/55627.pdf. Accessed 10 March 2016.

  • Hu, Q., Pan, F., Pan, X., Zhang, D., Li, Q., Pan, Z., & Wei, Y. (2015). Spatial analysis of climate change in Inner Mongolia during 1961-2012, China. Applied Geography, 60, 254–260.

    Article  Google Scholar 

  • Huang-Lachmann, J.-T., & Lovett, J. C. (2015). How cities prepare for climate change: comparing Hamburg and Rotterdam. Cities. doi:10.1016/j.cities.2015.11.001.

    Google Scholar 

  • Huber, D. G. & Gulledge, J. (2011). Extreme weather and climate change: understanding the link and managing the risk. Available at: http://www.c2es.org/publications/extreme-weather-and-climate-change. Accessed March 8 2016.

  • Hurth, V., & McCarney, P. (2015). International standards for climate-friendly cities. Nature Climate Change, 5, 1025–1026. doi:10.1038/nclimate2823.

    Article  Google Scholar 

  • Idowu, O. A., & Martins, O. (2007). Hydrograph analysis for groundwater recharge in the phreatic basement aquifer of the Opeki River basin, Southwestern Nigeria. Asset Series B, 6(2), 132–141.

    Google Scholar 

  • Isikwue, B. C., Ameh, M. E., & Utah, E. Y. (2013). Analysis of rainfall variability over some cities in Nigeria using harmonic analysis technique. Nigerian Journal of Physics, 24, 16–24.

    Google Scholar 

  • Jones, K. R., Watson, J. E. M., Possingham, H. P., & Klein, C. J. (2016). Incorporating climate change into spatial conservation: a review. Biological Conservation, 194, 121–130.

    Article  Google Scholar 

  • Karl, T. R., Janes, P. D., Knight, R. W., Kukla, J., Plummer, N., Razuvayev, V., Gallo, K. P., Lindesay, J., Charlson, R. J., & Peterson, T. C. (1993). Asymmetric trends of daily maximum and minimum temperatures: empirical evidence and possible causes. Bulletin of the American Mathematical Society, 74, 1007–1023.

    Article  Google Scholar 

  • Karnauskas, K. B., Donnelly, J. P., Barkley, H. C., & Martin, J. E. (2015). Coupling between air travel and climate. Nature Climate Change, 5, 1068–1073. doi:10.1038/nclimate2715.

    Article  Google Scholar 

  • Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend analysis of precipitation in Pieria region (Greece). European Water, 30, 31–40.

    Google Scholar 

  • Kaspersen, B. S., Jaconsen, T. V., Butts, M. B., Boegh, E., Muller, H. G., Stutter, M., Fredenslund, A. M., & Kjaer, T. (2016). Integrating climate change mitigation into river basin management planning for the water framework directive—a Danish case. Environmental Science & Policy, 55(1), 141–150.

    CAS  Article  Google Scholar 

  • Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., & Senior, C. A. (2014). Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change, 4, 570–576. doi:10.1038/nclimate2258.

    Article  Google Scholar 

  • Kim, J.-S., Jain, S., & Norton, S. A. (2010). Streamflow variability and hydroclimatic change at the bear brook watershed in Maine, USA. Environmental Monitoring and Assessment, 171(1), 47–58.

    Article  Google Scholar 

  • Kirono, D. G. C., Butler, J. R. A., McGregor, J. L., Ripaldi, A., Katzfey, J., & Nguyen, K. (2016). Historical and future seasonal rainfall variability in Nusa Tenggara Barat Province, Indonesia: implications for the agriculture and water sectors. Climate Risk Management, 12, 45–58.

    Article  Google Scholar 

  • Kleinen, T., & Petschel-held, G. (2007). Integrated assessment of changes in flooding probabilities due to climate change. Climatic Change, 81(3), 283–312.

    Article  Google Scholar 

  • Kreft, S. & Eckstein, D. (2013). Global climate risk index 2014. Who suffers most from extreme weather events? Weather-related loss events in 2012 and 1993 to 2012. Germanwatch, Berlin. Available at https://germanwatch.org/en/download/8551.pdf. Accessed 10 March 2016.

  • Kreft, S., Eckstein, D., Junghans, L., Kerestan, C. & Hagen, U. (2014). Global climate risk index 2015. Who suffers most from extreme weather events? Weather-related loss events in 2013 and 1994 to 2013. Germanwatch, Berlin. Available at https://germanwatch.org/en/download/10333.pdf. Accessed 10 March 2016.

  • Kulkarni, S., Deo, M. C. & Ghosh, S. (2016). Evaluation of wind extremes and wind potential under changing climate for Indian offshore using ensemble of 10 GCMs. Ocean & Coastal Management, 121, 141–152.

  • Kundewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., et al. (2014). Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal. doi:10.1080/02626667.2013.857411.

    Google Scholar 

  • Lagos Water Corporation (2011). LWC targets 733 millions daily by 2020. http://www.lagoswater.org/news.php?page=45. Accessed 29 March 2011.

  • Lawson, M. P., Balling, R. C., Peters, A. J., & Rundquist, D. C. (1981). Spatial analysis of secular temperature fluctuations. Journal of Climatology, 1, 325–332.

    Article  Google Scholar 

  • Lee, J.-W., & Hong, S.-Y. (2014). Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theoretical and Applied Climatology, 117, 667–677.

    Article  Google Scholar 

  • Li, Y., Guo, Y., & Yu, G. (2013). An analysis of extreme flood events during the past 400 years at Taihu Lake, China. Journal of Hydrology, 500, 217–225.

    Article  Google Scholar 

  • Little, C. M., Horton, R. M., Kopp, R. E., Oppenheimer, M., Vecchi, G. A., & Villarini, G. (2015). Joint projections of US East Coast sea level and storm surge. Nature Climate Change, 5, 1114–1120. doi:10.1038/nclimate2801.

    Article  Google Scholar 

  • Malekinezhad (2014). Regionalization approach for modelling of monthly evaporation based on cluster analysis. Natural Resources and Conservation, 2(2), 25–32.

    Google Scholar 

  • Massuanganhe, E. A., Macamo, C., Westerbeg, L.-O., Bandeira, S., Mavume, A., & Ribeiro, E. (2015). Deltaic coasts under climate-related catastrophic events—insights from the save River Delta, Mozambique. Ocean & Coastal Management, 116, 331–340.

    Article  Google Scholar 

  • Mazdiyasni, O., & Aghakouchak, A. (2015). Substantial increase in concurrent droughts and heat waves in the United States. PNAS, 112(37), 11484–11489.

    CAS  Article  Google Scholar 

  • McClain, M. E. (2013). Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications. Ambio, 42, 549–565.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales, eighth conference on applied climatology (pp. 179–186). Anaheim CA: American Meteorological Society.

    Google Scholar 

  • Medvigy, D., & Beaulieu, C. (2012). Trends in daily solar radiation and precipitation coefficients of variation since 1984. Journal of Climate, 25, 1330–1339.

    Article  Google Scholar 

  • Migala, K., Urban, G., & Tomczynski, K. (2015). Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation. Theoretical and Applied Climatology, 125, 337–351.

    Article  Google Scholar 

  • Millan, M. M. (2014). Extreme hydrometeorological events and climate change predictions in Europe. Journal of Hydrology, 518(B), 206–224.

    CAS  Article  Google Scholar 

  • Miralles, D. G., van der Berg, M. J., Gash, J. H., Parinussa, R. M., de Jeu, R. A. M., Beck, H. E., Holmes, T. R. H., Jimenez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J., & Dolman, A. J. (2014). El Nino-La Nina cycle and recent trends in continental evaporation. Nature Climate Change, 4, 122–126. doi:10.1038/nclimate2068.

    Article  Google Scholar 

  • Motsholapheko, M. R., Kgathi, D. L., & Vanderpost, C. (2011). Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana. Physics & Chemistry of the Earth A/B/C, 36(14–15), 984–995.

    Article  Google Scholar 

  • Muis, S., Guneralp, B., Jongman, B., Aerts, J. C. J. H., & Ward, P. J. (2015). Flood risk and adaptation strategies under climate change and urban expansion: a probabilistic analysis using global data. Science of the Total Environment, 538, 445–457.

    CAS  Article  Google Scholar 

  • Ndebele-Murisa, M. R. (2016). Modeling fish production in Lake Kariba to inform mitigation of adverse impacts of climate change. ACCFP Final Technical Report. http://start.org/download/accfp/ndebele-murisa-final.pdf. Accessed 10 March 2016.

  • Nigerian Meteorological Agency (2010). Nigeria Climate Review Bulletin 2010. Available at http://www.nimetng.org/uploads/publication/2010%20Climate%20Review.pdf. Accessed 10 March 2016.

  • Nigeria Meteorological Association (2010). Nigeria Climate Review Bulletin 2010. http://www.nimetng.org/uploads/publication/2010%20Climate%20Review.pdf. Accessed 10 March 2016.

  • NIMET (2011). Seasonal rainfall prediction 2011. Nigerian Meteorological Agency. http://nimet.gov.ng/sites/default/files/publications/2011-Annual-Rainfall-Predictions.pdf. Accessed March 10 2016

  • Nka, B. N., Oudin, L., Karambiri, H., Paturel, J. E., & Ribstein, P. (2015). Trends in floods in West Africa: analyses based on 11 catchments in the region. Hydrology and Earth System Sciences, 19, 4707–4719.

    Article  Google Scholar 

  • Nkuna, T. R., & Odiyo, J. O. (2016). The relationship between temperature and rainfall variability in the Levubu sub-catchment, South Africa. International Journal of Environmental Science, 1, 66–75.

    Google Scholar 

  • Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2015). A review and critical analysis of the efforts towards urban flood reduction in the Lagos region of Nigeria. Natu. Hazards Earth Syst. Sci. Discuss, 3, 3897–3923.

    Article  Google Scholar 

  • NOAA (2007) Climate change. Downloaded January 26, 2016. Available from http://www.nws.noaa.gov/om/brochures/climate/Climatechange.pdf. Accessed 10 March 2016.

  • Nwigwe, C., & Emberga, T. T. (2014). An assessment of causes and effects of flood in Nigeria. Standard Scientific Research & Essays, 2(7), 307–315.

    Google Scholar 

  • Obasi, R. A. (2013). Vulnerability of soil erosion in Okitipupa area of Ondo state, Southwest Nigeria: a climatic problem. International Journal of Science & Technology, 2(4), 326–335.

    Google Scholar 

  • Odjugo, P. A. O. (2010). General overview of climate change impacts in Nigeria. Journal of Human Ecology, 29(1), 47–55.

    Google Scholar 

  • Odufuwa, B. O., Adedeji, O. H., Oladesu, J. O., & Bongwa, A. (2012). Floods of fury in Nigerian cities. Journal of Sustainable Development, 5(7), 69–79.

    Google Scholar 

  • Odunuga, S., Oyebande, L. & Omojola, A. S. (2012). Socio-economic indicators and public perception on urban flooding in Lagos, Nigeria. Hydrology for Disaster Management. Nigerian Association of Hydrological Sciences, 82–96.

  • Ogunsote, O. O. & Prucnal-Ogunsote, B. (2007). Extreme weather and climate events: Implications for urban planning, architecture and tourism infrastructure. International Conference of the Nigerian Meteorological Society. FUTA, Akure, Ondo State, November 11–15, 2007. Available at http://sdngnet.com/Files/Lectures/FUTA-ARC-810%20Applied%20Climatology/CD%2020112012/Extreme%20Weather%20and%20Climate%20Events%20071103o.pdf. Accessed 10 March 2016.

  • Oguntunde, P. G., Abiodun, B. J., Olukunle, O. J., & Olufayo, A. A. (2012). Trends and variability in pan evaporation and other climatic variables at Ibadan, Nigeria, 1973–2008. Meteorological Applications, 19(4), 464–472.

    Article  Google Scholar 

  • Okorie, F. C. (2015). Analysis of 30 years rainfall variability in Imo state of southeastern Nigeria. Hydrological sciences & water security: past, present & future. Proceedings of the 11th Kovacs Colloquim, Paris, France, June 2014. IAHS, 366, 131–132.

    Article  Google Scholar 

  • Ologunorisa, T. E., & Adejuwon, J. O. (2003). Annual rainfall trends and periodicity in the Niger Delta, Nigeria. Journal of Meteorology, 28, 41–51.

    Google Scholar 

  • Olthius, K., Benni, J., Eichwede, K., & Zevenbergen, C. (2015). Slum upgrading: assessing the importance of location and a plea for a spatial approach. Habitat International, 50, 270–288.

    Article  Google Scholar 

  • Olubusoye, O. E., & Olaomi, J. O. (2002). Statistics for engineering, physical and biological sciences. Ibadan, Nigeria: Divine Touch Publication.

    Google Scholar 

  • Onwuka, S. U., Ikekpeazu, F. O., & Onuoha (2015). Assessment of the causes of 2012 floods in Aguleri & Unuleri, Anambra east local government area of Anambra state, Nigeria. British Journal of Environmental Sciences, 3(1), 43–57.

    Google Scholar 

  • Oshodi L (2013). Flood management and governance structure in Lagos, Nigeria. Accessed 10 January 2016.

  • Oyegoke, S. O., & Sojobi, A. O. (2012). Developing appropriate techniques to alleviate the Ogun River network annual flooding problems. International Journal of Scientific & Engineering Research, 3(2), 1–7.

    Google Scholar 

  • Oyegoke, S. O., Adeyemi, A. O., & Sojobi, A. O. (2012). The challenges of water supply for a megacity: a case study of Lagos metropolis. International Journal of Scientific and Engineering Research, 3(2), 1–10.

    Google Scholar 

  • Oyekale, A. S., Oladele, O. I., & Mukela, F. (2013). Impacts of flooding on coastal fishing folks and risk adaptaion behaviours in Epe, Lagos state. African Journal of Agricultural Research, 8(26), 3392–3405.

    Article  Google Scholar 

  • Oyinloye, M., Olamiju, I., & Adekemi, O. (2013). Environmental impact of flooding on Kosofe local government area of Lagos state, Nigeria: a GIS perspective. Journal of Environment & Earth Science, 3(5), 57–66.

    Google Scholar 

  • Panteli, M., & Mancarella, M. (2015). Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies. Electric Power Systems Research, 127, 259–270.

    Article  Google Scholar 

  • Pitman, A. J., De Noublet-Ducoudre, N., Avila, F. B., Alexander, L. V., Boisier, J. P., Brovkin, V., Deliri, C., Cruz, F., Donat, M. G., Gayler, V., Van den Hurk, B., Reick, C., & Voldoire, A. (2012). Effects of land cover change on temperature and rainfall extremes in multi-model ensemble similarities. Earth System Dynamics, 3, 213–231.

    Article  Google Scholar 

  • Prokop, P., & Walanus, A. (2015). Variation in the orographic extreme rain events over the Meghalaya Hills in Northeast India in the two halves of the twentieth century. Theoretical and Applied Climatology, 121, 389–399. doi:10.1007/s00704-014-1224-x.

    Article  Google Scholar 

  • Rahman, M. A., & Rahman, S. (2015). Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95.

    Article  Google Scholar 

  • Robbins, P. E., Skov, M. W., Lewis, M. J., Gimenez, L., Davies, A. G., Malham, S. K., Neill, S. P., McDonal, J. E., Whitton, T. A., Jackson, S. E., & Jago, C. F. (2016). Impact of climate change on UK estuarine: a review of past trends and potential projections. Estuarine, Coastal and Shelf Science, 169, 119–135.

    Article  Google Scholar 

  • Sarr, M. A., Seidou, O., Tramblay, Y., & El Adlouni, S. (2015). Comparison of downscaling methods for mean and extreme precipitation in Senegal. Journal of Hydrology: Regional Studies, 4, 369–385.

    Google Scholar 

  • Schar, C., Vidale, P. L., Luthi, D., Frei, C., Haberli, C., Liniger, M. A., & Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–336. doi:10.1038/nature02300.

    Article  CAS  Google Scholar 

  • Schellnhuber, H. J. & Martin, M. A. (2014). Climate-system tipping points and extreme weather events. Sustainable Humanity, Sustainable Nature: Our Responsibility. Pontifical Academy of Sciences, Vatican City. Available at http://www.casinapioiv.va/content/dam/accademia/pdf/es41/es41-schellnhuber.pdf. Accessed 10 March 2016.

  • Sharif, M., Archer, D. R., Fowler, H. J., & Forsyth, N. (2013). Trends in timing and magnitude of flow in the upper Indus Basin. Hydrology and Earth System Sciences, 17, 1503–1516.

    Article  Google Scholar 

  • Shongwe, M., van Oldenborgh, G., deBoer, B., van den Hurk, B & van Aalst, M. (2015). Changes in extreme weather in Africa under global warming. KNMI (Koninklejk Netherlands Meteorological Institute), Germany. Available at http://bibliotheek.knmi.nl/klimaatrapporten/Changes_in_extreme_weather_in_Africa.pdf. Accessed 10 March 2016.

  • Singh, A., & Patwardhan, A. (2012). Spatio-temporal distribution of extreme weather events in India. Procedia APCBEE, 1, 258–262.

    Article  Google Scholar 

  • Smith, M. D. (2013). Extreme climatic events. Reference Module in Earth Systems & Environmental Sciences from Climate variability, 4, 71–80.

    Google Scholar 

  • Sneva, F. A. (1977). Correlations of precipitation and temperature with spring, regrowth, and mature crested wheatgrass yields. Journal of Range Management, 30(4), 270–275.

    Article  Google Scholar 

  • Sojobi, A. O. (2016). Evaluation of groundwater quality in a rural community in north central of Nigeria. Environmental Monitoring and Assessment, 188(3), 1–17.

    CAS  Article  Google Scholar 

  • Solecki, W. (2015). Hurricane Sandy in New York, extreme climate events and the urbanization of climate change: perspectives in the context of sub-Saharan African cities. Current Opinion in Environmental Sustainability, 13, 88–94.

    Article  Google Scholar 

  • Solecki, W., Seto, K. C., Balk, D., Bigio, A., Boone, A., Creutzig, F., Fragkias, M., Lwasa, S., Marcotullio, P., Romero-Lankao, P., & Zwickel, T. (2015). A conceptual framework for an urban areas typology to integrate climate change mitigation and adaptation. Urban Climate, 14(1), 116–137.

    Article  Google Scholar 

  • Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., Sabziparvar, A. A., SaadatAbadi, A. R., et al. (2015). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology. doi:10.1007/s00704-015-1609-5.

    Google Scholar 

  • Stan, F. I., Neculau, G., Zaharia, I., Ioana-Toroima, G., & Mihalache, S. (2016). Study on the evaporation and evapotranspiration measured on the Caldarusani Lake (Romania). Procedia Environmental Sciences, 32, 281–289.

    Article  Google Scholar 

  • Su, F., Zhang, L., Ou, T., Chen, D., Yao, Tong, K., & Qi, Y. (2016). Hydrological response to future climate changes for the upstream river basins in the Tibetan plateau. Global & Planetary Change, 136, 82–95.

    Article  Google Scholar 

  • Sura, P. (2011). A general perspective of extreme events in weather and climate. Atmospheric Research, 101(1–2), 1–21.

    Article  Google Scholar 

  • Tall, A., Patt, A. G., & Fritz (2013). Reducing vulnerability to hydro-meteorological extrems in Africa. A qualitative assessment of national climate disaster management policies: accounting for heterogeneity. Weather and Climate Extremes, 1, 4–16.

    Article  Google Scholar 

  • Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., & MacDonald, A. M. (2012). Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3, 374–378. doi:10.1038/nclimate1731.

    Article  Google Scholar 

  • Tezuka, S., Takiguchi, H., Kazama, S., Sato, A., Kawagoe, S., & Sarukkalige (2014). Estimation of the effects of climate change on flood-triggered economic losses in Japan. International Journal of Disaster Risk Reduction, 9, 58–67.

    Article  Google Scholar 

  • Tomczyk, A. M., Piotrowski, P., & Bednorz, E. (2016). Warm spells in northern Europe in relation to atmospheric circulation. Theoretical and Applied Climatology. doi:10.1007/s00704-015-1727-0.

    Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015). Attribution of climate extreme events. Nature Climate Change, 5, 725–730.

    Article  Google Scholar 

  • Twardosz, R., & Kossowska-Cezak, U. (2016). Exceptionally cold and mild winters in Europe (1951-2010). Theoretical and Applied Climatology, 125, 399–411.

    Article  Google Scholar 

  • UN-Habitat (United Nations Human Settlements Programme). (2008). State of the world’s cities 2010/2011-Cities for all: Bridging the urban divide. Nairobi, Kenya. Accessed 10 March 2016.

  • United Nations Centre for Human Settlements (1996). An urbanizing world: global report on human settlements. Oxford: Oxford University Press UNCHS. World Commission on Environment and Development (1987) Our Common Future, Oxford University Press. p. 8. Accessed 8 March 2015.

    Google Scholar 

  • Van Pelt, S. C., Beersma, J. J., Buishand, T. A., van den Hurk, B. J. J. M., & Scellekens, J. (2015). Uncertainty in the future change of extreme precipitation over the Rhine Basin: the role of internal climate variability. Climate Dynamics, 44(7), 1789–1800.

    Article  Google Scholar 

  • Vellinga, P., & van Verseveld, W. J. (2000). Climate change and extreme weather events. Gland, Switzerland: World-wide Fund for Nature Accessed 10 March 2016.

    Google Scholar 

  • Villarini, G. (2012). Analyses of annual and seasonal maximum daily rainfall accumulations for Ukraine, Moldova and Romania. International Journal of Climatology, 32, 2213–2226.

    Article  Google Scholar 

  • Villarini, G., Smith, J. A., Baeck, M. L., Vitolo, R., Stephenson, D. B., & Krajewski, W. F. (2011). On the frequency of heavy rainfall for the Midwest of the United States. Journal of Hydrology, 400, 103–120.

    Article  Google Scholar 

  • Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding from surge and rainfall for major US cities. Nature Climate Change, 5, 1093–1097. doi:10.1038/nclimate2736.

    Article  Google Scholar 

  • Warren, R., VanDerWal, J., Price, J., Welbergen, J. A., Atkinson, I., Ramirez-Villeges, J., Osborn, T. J., Jarvis, A., Shoo, L. P., Williams, S. E., & Lowe, T. J. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678–682. doi:10.1038/nclimate1887.

    Article  Google Scholar 

  • Weathers, M. R. & Kendall, B. E. (2015). Developments in the framing of climate change as a public health issue in US Newspapers. doi: 10.1080/17524032.2015.1050436.

  • Weissenbeeck, C. F. A., Sonneveld, B. G. J. S., & Voortman, R. L. (2016). Localization and characterization of populations vulnerable to climate change: two case studies in sub-Saharan Africa. Applied Geography, 66, 81–91.

    Article  Google Scholar 

  • Williams, P. D., & Joshi, M. M. (2013). Intensification of winter transatlantic aviation trubulence in response to climate change. Nature Climate Change, 3, 644–648. doi:10.1038/nclimate1866.

    Article  Google Scholar 

  • Wohl, E., Barros, A., Brunsell, N., Chappell, N. A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrikx, J. M. H., Juvik, J., McDonnell, J., & Ogden, F. (2012). The hydrology of the humid tropics. Nature Climate Change, 2, 655–662. doi:10.1038/nclimate1556.

    Article  Google Scholar 

  • World Bank (2013). World Bank Population Growth Rate 2009–2013, available at http://data.worldbank.org/indicator/SP.POP.GROW. Accessed 10 March 2015.

  • Wu, X., Lu, Y., Zhou, S., Chen, L., & Xu, B. (2016). Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environmental International, 86, 14–23.

    Article  Google Scholar 

  • Yilmaz, A. G. & Perera, B. J. C. (2015). Extreme rainfall non-stationarity investigation and intensity-frequency-duration relationship. Accessed 28 Jan 2016.

  • Zhang, G. J., Cai, M., & Hu, A. X. (2013). Energy consumption and the unexplained winter warming over northern Asia and North America. Nature Climate Change, 3, 466–470.

  • Zhou, G., Yang, S., & Zheng, D. (2016). Multi-scale variation of the meriodional movement of the western Pacific warm pool and its associated large-scale climate features. Theoretical and Applied Climatology. doi:10.1007/s00704-016-1819-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebayo Olatunbosun Sojobi.

Ethics declarations

Funding

The authors received no direct funding for this research.

Conflict of interest

The authors declare no conflict of interest and compliance with professional ethical standards in the research.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sojobi, A.O., Balogun, I.I. & Salami, A.W. Climate change in Lagos state, Nigeria: what really changed?. Environ Monit Assess 188, 556 (2016). https://doi.org/10.1007/s10661-016-5549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5549-z

Keywords

  • Climate
  • Timescale
  • Rainfall
  • Lagos state
  • Maximum temperature
  • Minimum temperature