Skip to main content
Log in

Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

1,4-Dichlorobenzene (1,4-DCB) is a common organic contaminant in water. To determine the effects of this contaminant on photosynthesis in the freshwater alga Chlorella pyrenoidosa, algal cells were treated with 1,4-DCB at different concentrations for various times, and their photosynthetic pigment contents and chlorophyll fluorescence traits were analyzed. The results showed that 1,4-DCB exerted toxic effects on photosynthesis in C. pyrenoidosa, especially at concentrations exceeding 10 mg/L. The inhibitory effects of 1,4-DCB were time- and concentration-dependent. After treatment with 1,4-DCB (≥10 mg/L), the contents of photosynthetic pigments decreased significantly, the photosystem II reaction center was irreversibly damaged, and the quantum yield of photosystem II decreased significantly. Also, there were sharp decreases in the efficiency of photosynthetic electron transport and energy conversion. Photosystem II became overloaded as the amount of excitation energy distributed to it increased. All of these events weakened the photochemical reaction, and ultimately led to serious inhibition of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badger, M. R., von Caemmerer, S., Ruuska, S., & Nakano, H. (2000). Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355(1402), 1433–1446.

    Article  CAS  Google Scholar 

  • Bornman, J. F., & Vogelmann, T. C. (1991). Effect of UV-B radiation on leaf optical properties measured with fibre optics. Journal of Experimental Botany, 42(4), 547–554.

    Article  Google Scholar 

  • Braun, G., & Malkin, S. (1990). Regulation of the imbalance in light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrane. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1017(1), 79–90.

    Article  CAS  Google Scholar 

  • Butterworth, B. E., Aylward, L. L., & Hays, S. M. (2007). A mechanism-based cancer risk assessment for 1,4-dichlorobenzene. Regulatory Toxicology and Pharmacology, 49(2), 138–148.

    Article  CAS  Google Scholar 

  • Chen, J. X., & Wang, X. F. (2002). Experimental guide for plant physiology. Guangzhou: South China University of Technology Press.

    Google Scholar 

  • Eisentraeger, A., Dott, W., Klein, J., & Hahn, S. (2003). Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotoxicology and Environmental Safety, 54(3), 346–354.

    Article  CAS  Google Scholar 

  • Ekelund, N. G. A., & Aronsson, A. (2007). Changes in chlorophyll a fluorescence in Euglena gracilis and Chlamydomonas reinhardtii after exposure to wood-ash. Environmental and Experimental Botany, 59(1), 92–98.

    Article  CAS  Google Scholar 

  • Farré, M., Gajda-Schrantz, K., Kantiani, L., & Barceló, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry, 393(1), 81–95.

    Article  Google Scholar 

  • Han, B. P., Han, Z. G., & Fu, X. (2001). The mechanism and model of algae photosynthesis (pp. 6–16). Beijing: Science Press.

    Google Scholar 

  • He, Y., Chen, H., Yang, J., Hu, Z. L., & Lei, A. P. (2011). Effects of fluoranthene on growth and chlorophyll fluorescence characteristics of Navicula lanceolata. Environmental Science & Technology, 34(4), 10–13.

    CAS  Google Scholar 

  • IPCS (International Programme Chemical Safety) (1991). Environment health criteria 128. Chlorobenzenes other than hexachlorobenzene. Geneva: WHO 125, 134, 149, 164, 178.

    Google Scholar 

  • Jin, X. L., Zhang, N., Li, X., & Yue, J. J. (2011). Toxic effects of four nanoscale oxides on Chlorella vulgaris. Journal of Tianjin University of Technology, 27, 58–62.

    Google Scholar 

  • Lazár, D. (1999). Chlorophyll a fluorescence induction. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1412(1), 1–28.

    Article  Google Scholar 

  • Li, H. S. (2000). The principle and technology of plant physiology and biochemistry. Beijing: Higher Education Press.

    Google Scholar 

  • Li, M., Luo, X. J., Zhang, X., Yang, Z. H., Xiang, K., Xiao, X., & Chen, X. N. (2011). A common variant of the cardiomyopathy associated 5 gene (CMYA5) is associated with schizophrenia in Chinese population.Schizophrenia. Research, 129(2), 217–219.

    Google Scholar 

  • Liang, Y., Feng, L. X., Yin, C. L., & Cao, C. H. (2006). Effects of high temperature stress on the chlorophyll fluorescence kinetics of Phaeodactylum tricornutum and Chaetoceros gracilis. Periodical of Ocean University of China, 36, 427–433.

    CAS  Google Scholar 

  • MacIntyre, H. L., Kana, T. M., Anning, T., & Geider, R. J. (2002). Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria1. Journal of Phycology, 38(1), 17–38.

    Article  Google Scholar 

  • Morant-Manceau, A., Pradier, E., & Tremblin, G. (2004). Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. Journal of Plant Physiology, 161(1), 25–33.

    Article  CAS  Google Scholar 

  • Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40(1), 13–29.

    Article  Google Scholar 

  • Ruan, Z. X., & Brown, M. T. (2008). Effects of acute glyphosate exposure on the growth and physiology of Nostoc sphaeroides: an edible cyanobacterium of paddy rice fields. Acta Hydrobiologica Sinica, 32, 462–468.

    Article  CAS  Google Scholar 

  • Schreiber, U. (1997). Chlorophyll fluorescence and photosynthetic energy conversion: simple introductory experiments with the TEACHING-PAM chlorophyll fluorometer. Effeltrich, Germany: Heinz Walz GmbH.

    Google Scholar 

  • Shen, G. X., Yan, G. A., Yu, X., Liu, Y. D., Song, L. R., & Xu, L. H. (1999). The toxic effects of naphthalene and its derivants on Chlorella vulgaris. Acta Hydrobiologica Sinica, 23(5), 460–468.

    Google Scholar 

  • Van Kooten, O., & Snel, J. F. H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25(3), 147–150.

    Article  CAS  Google Scholar 

  • Wang, Y., Tang, X., Li, Y. Q., & Liu, Y. (2002). Stimulation effect of anthracene on marine microalgae growth. Chinese Journal of Applied Ecology, 13(3), 343–346.

    CAS  Google Scholar 

  • Zhang, T. T., Zheng, C. Y., Hu, W., Xu, W. W., & Wang, H. F. (2010). The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa. Journal of Applied Phycology, 22(1), 71–77.

    Article  Google Scholar 

  • Zhou, X., Xia, L., Ge, H., Zhang, D., & Hu, C. (2013). Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresource Technology, 138, 131–135.

    Article  Google Scholar 

  • Ziagova, M., & Liakopoulou-Kyriakides, M. (2007). Comparison of cometabolic degradation of 1, 2-dichlorobenzene by pseudomonas sp. and staphylococcus xylosus. Enzyme and Microbial Technology, 40(5), 1244–1250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the editor of Edanz Editing for his/her editorial assistance with the English. This study was funded by the Foundation of Plateform Construction Project of Infrastructure for Science and Technology of Shanxi (No. 2015091004-0102) and Social Development Foundation of Shanxi (No. 201603D321008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulian Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, J., Feng, J. et al. Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa . Environ Monit Assess 188, 526 (2016). https://doi.org/10.1007/s10661-016-5537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5537-3

Keywords

Navigation