Skip to main content
Log in

Quality assessment of Romanian bottled mineral water and tap water

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • 98/83/EC. (1998). Council Directive 98/83/ECof 3 November 1998 on the quality of water intended for human consumption. In E. Commission (Ed.) Official Journal of the European Communities.

  • 311/2004. (2004). R. Lege nr. 311 din 28 iunie 2004 pentru modificarea si completarea Legii nr. 458/2002 privind calitatea apei potabile [in romanian]. In R. Government (Ed.). Monitorul Oficial al Romaniei.

  • 1020/2005. (2005). , R. Decision No. 1020/2005 for the approval of technical norms for natural mineral waters exploitation and commercialization (in romanian). In R. Government (Ed.), (Vol. 1020/2005): Official Bulletin

  • 2003/40/EC. (2003). Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters In E. Comission (Ed.), Official Journal of the European Union (Vol. 2003/40/EC, pp. 0034–0039).

  • 2009/54/EC. (2009). Commission Directive 2009/54/EC of the Eupean Parliament and of the Council on the exploitation and marketing of natural mineral waters. In E. Commission (Ed.), (Vol. 2009/54/EC, pp. 45–58). Official Journal of the European Union.

  • Al-Mudhaf, H. F., Alsharifi, F. A., & Abu-Shady, A. S. (2009). A survey of organic contaminants in household and bottled drinking waters in Kuwait. The Science of the Total Environment, 407(5), 1658–1668. doi:10.1016/j.scitotenv.2008.10.057.

    Article  CAS  Google Scholar 

  • AWWA (2014). The Potential Regulatory Implications of Strontium: American Water Works Association.

  • Baba, A., Erees, F. S., Hicsonmez, U., Cam, S., & Ozdilek, H. G. (2008). An assessment of the quality of various bottled mineral water marketed in Turkey. Environmental Monitoring and Assessment, 139(1–3), 277–285. doi:10.1007/s10661-007-9833-9.

    Article  CAS  Google Scholar 

  • Brima, E. I. (2014). Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area. KSA. Applied Water Science. doi:10.1007/s13201-014-0255-x.

    Google Scholar 

  • Carstea, E. M., Baker, A., Bieroza, M., & Reynolds, D. (2010). Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Research, 44(18), 5356–5366. doi:10.1016/j.watres.2010.06.036.

    Article  CAS  Google Scholar 

  • Carstea, E. M., Baker, A., Pavelescu, G., & Boomer, I. (2009). Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK. Hydrological Processes, 23(13), 1937–1946. doi:10.1002/hyp.7335.

    Article  Google Scholar 

  • Cicchella, D., Albanese, S., De Vivo, B., Dinelli, E., Giaccio, L., Lima, A., et al. (2010). Trace elements and ions in Italian bottled mineral waters: identification of anomalous values and human health related effects. Journal of Geochemical Exploration, 107(3), 336–349. doi:10.1016/j.gexplo.2010.04.004.

    Article  CAS  Google Scholar 

  • Cidu, R., Frau, F., & Tore, P. (2011). Drinking water quality: comparing inorganic components in bottled water and Italian tap water. Journal of Food Composition and Analysis, 24(2), 184–193. doi:10.1016/j.jfca.2010.08.005.

    Article  CAS  Google Scholar 

  • Determann, S., Lobbes, J. M., Reuter, R., & Rullkötter, J. (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry, 62(1–2), 137–156. doi:10.1016/S0304-4203(98)00026-7.

    Article  CAS  Google Scholar 

  • Diaz, G., Ortiz, R., Schettino, B., Vega, S., & Gutierrez, R. (2009). Organochlorine pesticides residues in bottled drinking water from Mexico City. Bulletin of Environmental Contamination and Toxicology, 82(6), 701–704. doi:10.1007/s00128-009-9687-7.

    Article  CAS  Google Scholar 

  • Diduch, M., Polkowska, Z., & Namiesnik, J. (2011). Chemical quality of bottled waters: a review. Journal of Food Science, 76(9), R178–R196. doi:10.1111/j.1750-3841.2011.02386.x.

    Article  CAS  Google Scholar 

  • Dinelli, E., Lima, A., De Vivo, B., Albanese, S., Cicchella, D., & Valera, P. (2010). Hydrogeochemical analysis on Italian bottled mineral waters: effects of geology. Journal of Geochemical Exploration, 107(3), 317–335. doi:10.1016/j.gexplo.2010.06.004.

    Article  CAS  Google Scholar 

  • Elliott, S., Lead, J. R., & Baker, A. (2006). Characterisation of the fluorescence from freshwater, planktonic bacteria. Water Research, 40(10), 2075–2083. doi:10.1016/j.watres.2006.03.017.

    Article  CAS  Google Scholar 

  • Evandri, M. G., Tucci, P., & Bolle, P. (2000). Toxicological evaluation of commercial mineral water bottled in polyethylene terephthalate: a cytogenetic approach with Allium cepa. Food Additives & Contaminants, 17(12), 1037–1045. doi:10.1080/02652030010014411.

    Article  CAS  Google Scholar 

  • Fan, Y. Y., Zheng, J. L., Ren, J. H., Luo, J., Cui, X. Y., & Ma, L. Q. (2014). Effects of storage temperature and duration on release of antimony and bisphenol a from polyethylene terephthalate drinking water bottles of China. Environmental Pollution, 192, 113–120. doi:10.1016/j.envpol.2014.05.012.

    Article  CAS  Google Scholar 

  • Felipe-Sotelo, M., Henshall-Bell, E. R., Evans, N. D. M., & Read, D. (2015). Comparison of the chemical composition of British and Continental European bottled waters by multivariate analysis. Journal of Food Composition and Analysis, 39, 33–42. doi:10.1016/j.jfca.2014.10.014.

    Article  CAS  Google Scholar 

  • Feru, A. (2004). Bottled natural mineral waters in Romania. Environmental Geology, 46(5). doi:10.1007/s00254-004-1006-3.

  • Feru, A. (2012). Ghidul apelor minerale naturale [in Romanian]. Bucharest: APEMIN.

    Google Scholar 

  • Franca, L., Lopez-Lopez, A., Rossello-Mora, R., & da Costa, M. S. (2015). Microbial diversity and dynamics of a groundwater and a still bottled natural mineral water. Environmental Microbiology, 17(3), 577–593. doi:10.1111/1462-2920.12430.

    Article  Google Scholar 

  • Frengstad, B. S., Lax, K., Tarvainen, T., Jæger, Ø., & Wigum, B. J. (2010). The chemistry of bottled mineral and spring waters from Norway, Sweden, Finland and Iceland. Journal of Geochemical Exploration, 107(3), 350–361. doi:10.1016/j.gexplo.2010.07.001.

    Article  CAS  Google Scholar 

  • Gonzalez Alonso, S., Valcarcel, Y., Montero, J. C., & Catala, M. (2012). Nicotine occurrence in bottled mineral water: analysis of 10 brands of water in Spain. The Science of the Total Environment, 416, 527–531. doi:10.1016/j.scitotenv.2011.11.046.

    Article  CAS  Google Scholar 

  • Güler, C. (2007). Characterization of Turkish bottled waters using pattern recognition methods. Chemometrics and Intelligent Laboratory Systems, 86(1), 86–94. doi:10.1016/j.chemolab.2006.08.009.

    Article  Google Scholar 

  • Hudson, N., Baker, A., & Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 631–649. doi:10.1002/rra.1005.

    Article  Google Scholar 

  • Killinger, D., & Sivaprakasam, V. (2006). How water glows: water monitoring with laser fluorescence. Optics and Photonics News, 17(1), 34. doi:10.1364/opn.17.1.000034.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Gooddy, D. C., Butcher, A. S., & Morris, B. L. (2008). Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM). Applied Geochemistry, 23(12), 3384–3390. doi:10.1016/j.apgeochem.2008.07.011.

    Article  CAS  Google Scholar 

  • Leclerc, H., & Moreau, A. (2002). Microbiological safety of natural mineral water. FEMS Microbiology Reviews, 26(2), 207–222. doi:10.1111/j.1574-6976.2002.tb00611.x.

    Article  CAS  Google Scholar 

  • Levei, A. E., A., H. M., Senila, M., Miclean, M., Tanaselia, C., & Carstea, E. M. (2016). Chemical composition of some Romanian bottled natural mineral waters. Studia UBB Chemia, LXI (3), 103–112.

  • Mata, A. T., Ferreira, J. P., Oliveira, B. R., Batoreu, M. C., Barreto Crespo, M. T., Pereira, V. J., et al. (2015). Bottled water: analysis of mycotoxins by LC-MS/MS. Food Chemistry, 176, 455–464. doi:10.1016/j.foodchem.2014.12.088.

    Article  CAS  Google Scholar 

  • Mohebali, S., & Samari Jahromi, H. (2013). Evaluation of nitrate and trace elements concentration in drinking water: bottled, tap and well. Chinese Journal of Population Resources and Environment, 11(2), 142–148. doi:10.1080/10042857.2013.800386.

    Article  Google Scholar 

  • Oprea, C. R. (2015). Resursele economice si umane ale Carpatilor Orientali [in Romanian].

  • Otero, P., Saha, S. K., Moane, S., Barron, J., Clancy, G., & Murray, P. (2015). Improved method for rapid detection of phthalates in bottled water by gas chromatography-mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 997, 229–235. doi:10.1016/j.jchromb.2015.05.036.

    Article  CAS  Google Scholar 

  • Peh, Z., Šorša, A., & Halamić, J. (2010). Composition and variation of major and trace elements in Croatian bottled waters. Journal of Geochemical Exploration, 107(3), 227–237. doi:10.1016/j.gexplo.2010.02.002.

    Article  CAS  Google Scholar 

  • Sandulache, M. I. (2016). Carpatii Orientali [in Romanian].

    Google Scholar 

  • Semerjian, L. A. (2011). Quality assessment of various bottled waters marketed in Lebanon. Environmental Monitoring and Assessment, 172(1–4), 275–285. doi:10.1007/s10661-010-1333-7.

    Article  CAS  Google Scholar 

  • Singh, S., Henderson, R. K., Baker, A., Stuetz, R. M., & Khan, S. J. (2015). Online fluorescence monitoring of RO fouling and integrity: analysis of two contrasting recycled water schemes. Environmental Science: Water Research & Technology, 1(5), 689–698. doi:10.1039/c5ew00090d.

    CAS  Google Scholar 

  • Sorensen, J. P., Lapworth, D. J., Marchant, B. P., Nkhuwa, D. C., Pedley, S., Stuart, M. E., et al. (2015). In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. Water Research, 81, 38–46. doi:10.1016/j.watres.2015.05.035.

    Article  CAS  Google Scholar 

  • USEPA. (2016). Table of Regulated Drinking Water Contaminants. http://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants. Accessed 28.01 2016.

  • Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research International, 16(3), 278–286. doi:10.1007/s11356-009-0107-7.

    Article  CAS  Google Scholar 

  • WHO (2008). Guidelines for Drinking-water Quality (Third Edition ed.). Geneva: WHO Press.

Download references

Acknowledgments

This work was funded by the Core Program, under the support of ANCS, project number PN 16.40.01.01 and PN 16.40.02.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elfrida M. Carstea.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Carstea, E., Levei, E.A., Hoaghia, MA. et al. Quality assessment of Romanian bottled mineral water and tap water. Environ Monit Assess 188, 521 (2016). https://doi.org/10.1007/s10661-016-5531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5531-9

Keywords

Navigation