Skip to main content

Advertisement

Log in

Assessment of soil quality parameters using multivariate analysis in the Rawal Lake watershed

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil providing a wide array of ecosystem services is subjected to quality deterioration due to natural and anthropogenic factors. Most of the soils in Pakistan have poor status of available plant nutrients and cannot support optimum levels of crop productivity. The present study statistically analyzed ten soil quality parameters in five subwatersheds (Bari Imam, Chattar, Rumli, Shahdra, and Shahpur) of the Rawal Lake. Analysis of variance (ANOVA), cluster analysis (CA), and principal component analysis (PCA) were performed to evaluate correlation in soil quality parameters on spatiotemporal and vertical scales. Soil organic matter, electrical conductivity, nitrates, and sulfates were found to be lower than that required for good quality soil. Soil pH showed significant difference (p < 0.05) in mean values at different sampling sites and sampling months indicating that it is affected and determined by land uses and seasons. Pearson correlation revealed a strong positive correlation (r = 0.437) between nitrates and organic matter. Application of principal component analysis resulted in three major factors contributing 76 % of the total variance. For factor 1, temperature, sand, silt, clay, and nitrates had the highest factor loading values (>0.75) and indicated that these were the most influential parameters of first factor or component. Cluster analysis separated five sampling sites into three statistically significant clusters: I (Shahdra-Bari Imam), II (Chattar), and III (Shahpur-Rumli). Among the five sites, Shahdra was found to have good quality soil followed by Bari Imam. The present study illustrated the usefulness of multivariate statistical approaches for the analysis and interpretation of complex datasets to understand variations in soil quality for effective watershed management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afyuni, M. M., Wagger, M. G., & Leidy, R. B. (1997). Runoff of two sulfonylurea herbicides in relation to tillage system and rainfall intensity. Journal of Environmental Quality, 26(5), 1318–1326.

    Article  CAS  Google Scholar 

  • Ahmad, I., Ahmad, M. S. A., Hussain, M., Ashraf, M., & Ashraf, M. Y. (2011). Spatio-temporal variations in soil characteristics and nutrient availability of an open scrub type rangeland in the sub-mountainous Himalayan tract of Pakistan. Pakistan Journal of Botany, 43(1), 565–571.

    Google Scholar 

  • Akram, Z., Hussain, S., Mansoor, M., Afzal, M., Waqar, A., & Shabbir, I. (2014). Soil fertility and salinity status of Muzaffargarh District, Punjab Pakistan. Universal Journal of Agriculture Research, 2, 242–249.

    CAS  Google Scholar 

  • Angert, A., Weiner, T., Mazeh, S., Tamburini, F., Frossard, E., Bernasconi, S. M., & Sternberg, M. (2011). Seasonal variability of soil phosphate stable oxygen isotopes in rainfall manipulation experiments. Geochimica et Cosmochimica Acta, 75(15), 4216–4227.

    Article  CAS  Google Scholar 

  • Bai, J. H., Wang, Q., Hai-Feng, G., Rong, X., Wei, D., & Bao-Shan, C. (2010). Spatial and temporal distribution patterns of nitrogen in marsh soils from an inland alkaline wetland—a case study of Fulaowenpao wetland, China. Acta Ecologica Sinica, 30(4), 210–215.

    Article  CAS  Google Scholar 

  • Bailey, S. W., Horsley, S. B., & Long, R. P. (2005). Thirty years of change in forest soils of the Allegheny plateau, Pennsylvania. Soil Science Society of America Journal, 69(3), 681–690.

    Article  CAS  Google Scholar 

  • Barker, A. V., & Pilbeam, D. J. (Eds.) (2010). Handbook of plant nutrition. Boca Raton FL: CRC press.

    Google Scholar 

  • Benayas, J. M. R., Sánchez-Colomer, M. G., & Escudero, A. (2004). Landscape-and field-scale control of spatial variation of soil properties in Mediterranean montane meadows. Biogeochemistry, 69(2), 207–225.

    Article  CAS  Google Scholar 

  • Bhat, S. A., Meraj, G., Yaseen, S., & Pandit, A. K. (2014). Statistical assessment of water quality parameters for pollution source identification in Sukhnag stream: an inflow stream of lake Wular (Ramsar site), Kashmir Himalaya. Journal of Ecosystems, 2014, 1–18.

    Google Scholar 

  • Bockheim, J. G., Gennadiyev, A. N., Hartemink, A. E., & Brevik, E. C. (2014). Soil-forming factors and soil taxonomy. Geoderma, 226, 231–237.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (1996). The nature and properties of soils. (No. Ed. 11). Prentice-Hall Inc.

  • Bremer, D. J., Auen, L. M., Ham, J. M., & Owensby, C. E. (2001). Evapotranspiration in a Prairie ecosystem. Agronomy Journal, 93(2), 338–348.

    Article  Google Scholar 

  • Brogueira, M. J., & Cabeçadas, G. (2006). Identification of similar environmental areas in Tagus estuary by using multivariate analysis. Ecological Indicators, 6(3), 508–515.

    Article  Google Scholar 

  • Carlon, C., Critto, A., Marcomini, A., & Nathanail, P. (2001). Risk based characterisation of contaminated industrial site using multivariate and geostatistical tools. Environmental Pollution, 111(3), 417–427.

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Chen, C. R., Sinaj, S., Condron, L. M., Frossard, E., Sherlock, R. R., & Davis, M. R. (2003). Characterization of phosphorus availability in selected New Zealand grassland soils. Nutrient Cycling in Agroecosystems, 65 (1), 89-100.

  • Chen, X., Wu, H., & Wo, F. (2007). Nitrate vertical transport in the main paddy soils of Tai Lake region, China. Geoderma, 142(1), 136–141.

    Article  CAS  Google Scholar 

  • Chibsa, T., & Ta, A. A. (2009). Assessment of soil organic matter under four land use systems in the major soils of bale highlands, south East Ethiopia b. Factors Affecting Soil Organic Matter Distribution. World Applied Sciences Journal, 6(11), 1506–1512.

    CAS  Google Scholar 

  • Dawes, L., & Goonetilleke, A. (2006). Using multivariate analysis to predict the behaviour of soils under effluent irrigation. Water, Air, and Soil Pollution, 172(1–4), 109–127.

    Article  CAS  Google Scholar 

  • Don-Pedro, K. N., Oyewo, E. O., & Otitoloju, A. A. (2004). Trend of heavy metal concentrations in Lagos lagoon ecosystem, Nigeria. West African Journal of Applied Ecology, 5, 103–114.

    Google Scholar 

  • Edwards, J., Giles, M., & Tindal, C. (2012). The effects of burning and mowing on soil moisture, soil pH, and percent of carbon and nitrogen in soil and Andropogon gerardii. Tillers, 4, 15–19.

    Google Scholar 

  • Einax, J.W., & Soldt, U. (1999). Geostatistical and multivariate statistical methods for the assessment of polluted soils – merits and limitations. Chemometrics and Intelligent Laboratory Systems, 46, 79–91.

  • Emiru, N., & Gebrekidan, H. (2006). Effect of land use changes and soil depth on soil organic matter, total nitrogen and available phosphorus contents of soils in senbat watershed, western Ethiopia. Journal of agricultural and biological sciences, 8, 206–212.

    Google Scholar 

  • Fan, J., Hao, M., & Malhi, S. S. (2010). Accumulation of nitrate N in the soil profile and its implications for the environment under dryland agriculture in northern China: a review. Canadian Journal of Soil Science, 90(3), 429–440.

    Article  CAS  Google Scholar 

  • Fatima, T., Abid, M., Shanab, R. A., Ikram, M., & Jabbar, A. (2012). Study of topographic relationship of soils in old river terrace in Pakistan. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 28(1), 40–53.

    Google Scholar 

  • Feller, C., & Beare, M. H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79(1), 69–116.

    Article  CAS  Google Scholar 

  • Foth, H. D. (1991). Fundamentals of soil science (no, Ed. 8. New York, NY, USA: John Wiley and Sons.

    Google Scholar 

  • Foth, H. D., & Ellis, B. G. (1997). Soil fertility (2nd ed.). USA: Lewis CRC Press LLC.

    Google Scholar 

  • Gallego, J.L.R., Ordonez, A., & Loredo, J. (2002). Investigation of trace element sources from anindustrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International,27, 589–596.

  • Gelfand, I., & Yakir, D. (2008). Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biology and Biochemistry, 40(2), 415–424.

    Article  CAS  Google Scholar 

  • Hamarashid, N. H., Othman, M. A., & Hussain, M. A. H. (2010). Effects of soil texture n chemical composition, microbial populations and carbon mineralization in soil. Egyptian Journal of Experimental Biology, 6(1), 59–64.

    Google Scholar 

  • Hartsock, N. J., Mueller, T. G., Thomas, G. W., Barnhisel, R. I., Wells, K. L., & Shearer, S. A. (2000, July). Soil electrical conductivity variability. In International conference on precision agriculture. (Vol. 5).

  • He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., & Wysocki, D.A. (2012). Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185, 12–17.

  • Hedley, M. J., Saggar, S., & Francis, G. S. (2004). Chemical fractionation to characterize changes in Sulphur and carbon in soil caused by management. European Journal of Soil Science, 55(1), 79–90.

    Article  Google Scholar 

  • Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237, 173–195.

    Article  CAS  Google Scholar 

  • Hoorman, J., Hone, T., Sudman Jr., T., Dirksen, T., Iles, J., & Islam, K. R. (2008). Agricultural impacts on lake and stream water quality in grand Lake St. Marys, western Ohio. Water, Air, and Soil Pollution, 193(1–4), 309–322.

    Article  CAS  Google Scholar 

  • Iram, S., Ahmad, I., Ahad, K., Muhammad, A., & Anjum, S. (2009). Analysis of pesticides residues of Rawal and Simly lakes. Pakistan Journal of Botany, 41(4), 1981–1987.

    CAS  Google Scholar 

  • Jiao, Y., Xu, Z., & Zhao, J. (2009). Effects of grassland conversion to cropland and forest on soil organic carbon and dissolved organic carbon in the farming-pastoral ecotone of Inner Mongolia. Acta Ecologica Sinica, 29(3), 150–154.

    Article  Google Scholar 

  • Jindaluang, W., Kheoruenromne, I., Suddhiprakarn, A., Singh, B. P., & Singh, B. (2013). Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand. Geoderma, 195, 207–219.

    Article  Google Scholar 

  • Kadono, A., Funakawa, S., & Kosaki, T. (2009). Factors controlling potentially mineralizable and recalcitrant soil organic matter in humid Asia. Soil Science and Plant Nutrition, 55(2), 243–251.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baib, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309.

    Article  CAS  Google Scholar 

  • Keen, Y. C., Jalloh, M. B., Ahmed, O. H., Sudin, M., & Besar, N. A. (2011). Soil organic matter and related soil properties in forest, grassland and cultivated land use types. International Journal of Physical Sciences, 6(32), 7410–7415.

    CAS  Google Scholar 

  • Khalid, R., Mahmood, T., Bibi, R., Siddique, M. T., Alvi, S., & Naz, S. Y. (2012). Distribution and indexation of plant available nutrients of rainfed calcareous soils of Pakistan. Soil and Environment, 31(2), 146–151.

    Google Scholar 

  • Khan, M., Hussain, F., Musharaf, S., & Haider, A. S. (2012). Soil examination and measurement of Tehsil Takht-e-Nasrati, Pakistan. International Journal of Biosciences, 2(3), 58–66.

    Google Scholar 

  • Kone, B., Yao-Kouame, A., Ettien, J. B., Oikeh, S., Yoro, G., & Diatta, S. (2009). Modelling the relationship between soil color and particle size for soil survey in ferralsol environments. Soil and Environment, 28(2), 93–105.

    Google Scholar 

  • Kopáček, J., Hejzlar, J., Porcal, P., & Posch, M. (2014). Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900–2010. Science of the Total Environment, 470, 543–550.

    Article  Google Scholar 

  • Krull, E. S., Baldock, J. A., & Skjemstad, J. O. (2003). Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology, 30(2), 207–222.

    Article  Google Scholar 

  • Lettens, S., Van Orshoven, J., van Wesemael, B., Perrin, D., & Roelandt, C. (2004). The inventory-based approach for prediction of SOC change following land use change. Biotechnologie, Agronomie, Société et Environnement, 8(2), 141–146.

    CAS  Google Scholar 

  • McCauley, A., Jones, C., & Jacobsen, J. (2005). Basic soil properties. Soil and Water Management Module, 1.

  • Mitros, C., McIntyre, S., & Moscato-Goodpaster, B. (2012). Annual burning affects soil pH and total nitrogen content in the CERA oak woodlands. Tillers, 3, 29–32.

    Google Scholar 

  • Mussa, S. B., Elferjani, H. S., Haroun, F. A., & Abdelnabi, F. F. (2009). Determination of available nitrate, phosphate and sulfate in soil samples. International Journal of Pharm Tech Research, 1(3), 598–604.

    Google Scholar 

  • Norton, S. A., Lindberg, S. E., & Page, A. L. (Eds.) (1989). Soils, aquatic processes, and lake acidification (Vol. Vol. 4). Berlin: Springer.

    Google Scholar 

  • Ouhadi, V. R., & Goodarzi, A. R. (2007). Factors impacting the electro conductivity variations of clayey soils. Iranian Journal of Science and Technology, 31(B2), 109.

    CAS  Google Scholar 

  • PAK EPA, (2004). Report On Rawal Lake Catchment Area Montoring Operation.

  • Peverill, K. I., Sparrow, L. A., & Reuter, D. J. (Eds.) (1999). Soil analysis: an interpretation manual. Australia: CSIRO publishing.

    Google Scholar 

  • Radojevic, M., & Baškin, V. N. (1999). Practical environmental analysis. London: Royal Society of Chemistry.

    Google Scholar 

  • Rashid, A., Rafique, E., Din, J., Malik, S. N., & Arain, M. Y. (1997). Micronutrient deficiencies in rainfed calcareous soils of Pakistan. I. Iron chlorosis in the peanut plant. Communications in Soil Science & Plant Analysis, 28(1–2), 135–148.

    Article  CAS  Google Scholar 

  • Rice, C. W. (2006). Organic matter and nutrient dynamics. Encyclopedia of Soil Science, 2, 1180–1183.

    Google Scholar 

  • Sarwar, G., Hussain, N., Schmeisky, H., Suhammad, S., Ibrahim, M., & Ahmad, S. (2008). Efficiency of various organic residues for enhancing rice-wheat production under normal soil conditions. Pakistan Journal of Botany, 40(5), 2107–2113.

    Google Scholar 

  • Scott Bechtold, J., & Naiman, R. J. (2006). Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biology and Biochemistry, 38(6), 1325–1333.

    Article  Google Scholar 

  • Shabbir, R., Erum, S., & Khalid, S. (2014). Soil and vegetation analysis of selected roadside green belts in Rawalpindi city, Pakistan. International Research Journal of Biological Sciences, 3(3), 89–98.

    Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in northern Greece. Water Research, 37(17), 4119–4124.

    Article  CAS  Google Scholar 

  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 2099–2103.

    Article  CAS  Google Scholar 

  • Swan Jr., F. R. (1970). Post-fire response of four plant communities in south-Central New York state. Ecology, 51(6), 1074–1082.

    Article  Google Scholar 

  • Takata, Y., Funakawa, S., Akshalov, K., Ishida, N., & Kosaki, T. (2008). Regional evaluation of the spatio-temporal variation in soil organic carbon dynamics for rainfed cereal farming in northern Kazakhstan. Soil Science and Plant Nutrition, 54(5), 794–806.

    Article  CAS  Google Scholar 

  • Tester, J. R. (1989). Effects of fire frequency on oak savanna in east-Central Minnesota. Bulletin of the Torrey Botanical Club, 116(2), 134–144.

    Article  Google Scholar 

  • Tufekcioglu, A., Guner, S., & Tilki, F. (2005). Thinning effects on production, root biomass and some soil properties in a young oriental beech stand in Artvin, Turkey. Journal of environmental biology/Academy of Environmental Biology, India, 26(1), 91–95.

    CAS  Google Scholar 

  • Van Leeuwen, J. P., Moraetis, D., Lair, G. J., Bloem, J., Nikolaidis, N. P., Hemerik, L., & de Ruiter, P. C. (2015). Ecological soil quality affected by land use and management on semi-arid Crete. SOIL Discussions, 2, 187–215.

    Article  Google Scholar 

  • Vancampenhout, K., Wouters, K., De Vos, B., Buurman, P., Swennen, R., & Deckers, J. (2009). Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions—a pyrolysis–GC/MS study. Soil Biology and Biochemistry, 41(3), 568–579.

    Article  CAS  Google Scholar 

  • Wang, X. L., Lu, Y. L., Han, J. Y., He, G. Z., & Wang, T. Y. (2007). Identification of anthropogenic influences on water quality of rivers in Taihu watershed. Journal of Environmental Sciences, 19(4), 475–481.

    Article  CAS  Google Scholar 

  • WASA, (2011). Feasibility studies, detailed engineering design and onsite construction supervision for control of water pollution in steam surface reservoirs and sewage treatment plants in the city of Islamabad. Osmani & Company (Pvt. Ltd). Consulting engineers, architects and planners.

  • Yang, H. J., Shen, Z. M., Zhu, S. H., & Wang, W. H. (2007). Vertical and temporal distribution of nitrogen and phosphorus and relationship with their influencing factors in aquatic-terrestrial ecotone: a case study in Taihu Lake, China. Journal of Environmental Sciences, 19(6), 689–695.

    Article  Google Scholar 

  • Yang, X. L., Zhu, B., & Li, Y. L. (2013). Spatial and temporal patterns of soil nitrogen distribution under different land uses in a watershed in the hilly area of purple soil, China. Journal of Mountain Science, 10(3), 410–417.

    Article  Google Scholar 

  • Zhang, Y., Chen, W., Smith, S. L., Riseborough, D. W., & Cihlar, J. (2005). Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change. Journal of Geophysical Research: Atmospheres, 110(D3).

  • Zhang, M. K., Wang, L. P., & He, Z. L. (2007). Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils. Journal of Environmental Sciences, 19(9), 1086–1092.

    Article  CAS  Google Scholar 

  • Zornoza, R., Acosta, J. A., Bastida, F., Domínguez, S. G., Toledo, D. M., & Faz, A. (2015). Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. The Soil, 1(1), 173–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheen Begum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firdous, S., Begum, S. & Yasmin, A. Assessment of soil quality parameters using multivariate analysis in the Rawal Lake watershed. Environ Monit Assess 188, 533 (2016). https://doi.org/10.1007/s10661-016-5527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5527-5

Keywords

Navigation