Skip to main content

Advertisement

Log in

Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca2+ > Mg2+ > Na+ > K+ for cations and HCO3  ≫ NO3  > Cl > SO4 2− for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ako, A. A., Shimada, J., Eyong, G. E., & Fantong, W. Y. (2010). Access to potable water and sanitation in Cameroon within the context of Millennium Development Goals (MDGS). Water Science and Technology, 61(5), 1317–1339.

    Article  Google Scholar 

  • Ako, A. A., Shimada, J., Hosono, T., Ichiyanagi, K., Nkeng, G. E., Fantong, W. Y., Takem, G. E. E., & Njila, N. R. (2011). Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environmental Geochemistry and Health, 33, 559–575.

    Article  CAS  Google Scholar 

  • Ako, A. A., Shimada, J., Hosono, T., Kagabu, M., Ayuk, A. R., Nkeng, G. E., Takem, G. E. E., & Takounjou, A. L. F. (2012). Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environmental Geochemistry and Health. doi:10.1007/s10653-012-9453-3.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater, and pollution (2nd ed.649 pp). Rotterdam: Balkema Publishers.

  • Bartolomeo, A. D., Poletti, L., Sanchini, G., Sebastiani, B., & Morozzi, G. (2004). Relationship among parameters of lake polluted sediments by multivariate statistical analysis. Chemosphere, 55(10), 1323–1329.

    Article  Google Scholar 

  • Bozdaǧ, A., & Gӧmez, G. (2013). Evaluation of groundwater quality in the Cihanbeyli basin, Konya, Central Anatolia, Turkey. Environment and Earth Science (2013), 69, 921–937. doi:10.1007/s12665-012-1977-4.

    Article  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrologeology (p. 328). New York: Lewis.

    Google Scholar 

  • Craig, H. (1961). Isotopic variations in meteoric water. Science, 133, 1702–1703.

    Article  CAS  Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater regime. Journal of the Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: fundamentals and application to contamination. Boca Raton: CRC.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters, third edition. Prentice-Hall, Upper Saddle River, N.J., p 436.

  • Fantong, W. Y., Satake, H., Ayonghe, S. N., Aka, F. T., & Asai, K. (2009). Hydrogeochemical controls and usability of groundwater in the semi-arid Mayo Tsanaga River Basin: Far North Province, Cameroon. Environmental Geology, 58, 1281–1293. doi:10.1007/s00254-008-1629-x.

    Article  CAS  Google Scholar 

  • Fantong, W. Y., Kamtchueng, B. T., Yamaguchi, K., Ueda, A., Issa, Ntchantcho, R., Wirmvem, M. J., Kusakabe, M., Ohba, T., Zhang, J., Aka, F. T., Tanyileke, G., & Hell, J. V. (2015). Characteristics of chemical weathering and water-rock interaction in Lake Nyos dam (Cameroon): implications for vulnerability to failure and re-enforcement. Journal of African Earth Science, 101, 42–55.

    Article  CAS  Google Scholar 

  • Fisher, R. S., & Mulican, W. F. I. I. I. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 10, 455–474.

    Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical composition of some springs and lakes. In R. F. Gould (Ed.), Equilibrium concepts in natural water systems (pp. 222–242). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Güler, C., Kurt, M. A., Alpaslan, M., & Akbulut, C. (2012). Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414, 435–451.

    Article  Google Scholar 

  • Gupta, S., Dandele, P. S., Verma, M. B., & Maithani, P. B. (2009). Geochemical assessment of groundwater around Macherla-Karempudi area, Guntur District, Andhara Pradesh. Journal of the Geological Society of India, 73, 202–212.

    Article  CAS  Google Scholar 

  • Hem HD (1989) Study and interpretation of the chemical characteristics of natural waters (3rd ed.). U.S. Geological Survey Water–Supply 2254.

  • Hounslow, A. W. (1995). Water quality data: analysis and interpretation (p. 416). Boca Raton: Lewis Publishers.

    Google Scholar 

  • International Federation of Red Cross and Red Crescent Societies (2012). Emergency appeal final report. Cameroon: Cholera outbreak. http://reliefweb.int/sites/reliefweb.int/files/resources/MDRCM011fr.pdf.

  • Itai, T., & Kusakabe, M. (2004). Some practical aspects of an on-line chromium reduction method for D/H analysis of natural waters using a conventional IRMS. Geochemical Journal, 38, 435–440.

    Article  CAS  Google Scholar 

  • Jankowski, J., Acworth, R. I., & Shekarforoush, S. (1998). Reverse ionexchange in deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Austria. In G. B. Arehart & J. R. Hulston (Eds.), Proceedings of 9th international symposium on water–rock interaction (pp. 243–246). Rotterdam: Balkema.

    Google Scholar 

  • Jha, S. K., Mishra, V. K., Sharma, D. K., & Damodaran, T. (2011). Fluoride in the environment and its metabolism in humans. Reviews of Environmental Contamination and Toxicology, 211, 121–142. doi:10.1007/978-1-4419-8011-3_4.

    CAS  Google Scholar 

  • Kamtchueng, B. T., Fantong, W. Y., Ueda, A., Tiodjio, E. R., Anazawa, K., Wirmvem, M. J., Mvondo, J. O., Nkamdjou, S. L., Kusakabe, M., Ohba, T., Tanyileke, G., & Hell, J. V. (2014). Assessment of shallow groundwater in Lake Nyos catchment (Cameroon, Central-Africa): implications for hydrogeochemical controls and uses. Environment and Earth Science, 72, 3663–3678. doi:10.1007/s12665-014-3278-6.

    Article  CAS  Google Scholar 

  • Kamtchueng, B. T., Fantong, W. Y., Wirmvem, M. J., Tiodjio, E. R., Takounjou, A. F., Asai, K., Bopda Djomou, S. L., Kusakabe, M., Ohba, T., Tanyileke, G., Hell, J. V., & Ueda, A. (2015). A multi-tracer approach for assessing the origin, apparent age and recharge mechanism of shallow groundwater in the Lake Nyos catchment, Northwest, Cameroon. Journal of Hydrology, 523, 790–803.

    Article  CAS  Google Scholar 

  • Kendall, C., & Doctor, D. H. (2011). Stable isotope applications 590 in hydrologic studies. In H. D. Holland & K. K. Turekian (Eds.), Isotope geochemistry (1st ed., pp. 181–220). London: Academic Press London.

    Google Scholar 

  • Kumar, M., Kumari, K., Ramanathan, A., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab. India J Environ Geol, 53, 553–574.

    Article  CAS  Google Scholar 

  • Kusakabe, M., Ohba, T., Issa Yoshida, Y., Satake, H., Ohizumi, T., Evans, W. C., Tanyileke, G., & Kling, G. W. (2008). Evolution of CO2 in lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochemical Journal, 42, 93–118.

    Article  CAS  Google Scholar 

  • Lloyd, J. W., & Heathcoat, J. A. (1985). Natural inorganic hydrochemistry in relation to groundwater: an introduction (p. 296). New York: Oxford University Press.

    Google Scholar 

  • Ludwig, F., Stober, I., & Bucher, K. (2011). Hydrochemical groundwater evolution in the bunter sandstone sequence of the Odenwald Mountain Range, Germany: a laboratory and field study. Aquatic Geochemistry, 17, 165–193.

    Article  CAS  Google Scholar 

  • Makilo R (1982) Etude des sols développés sur matériaux volcaniques récents dans un secteur de l’Ouest Cameroun (région de Foumbot). Rapport de stage DGRST/ORSTOM Yaoundé.

  • Mano, J. K., Ghosh, S., & Padhy, P. K. (2013). Characterization and classification of hydrochemistry using multivariate graphical and hydrostatistical techniques. Research Journal Chemical Sciences, 3, 32–42.

    Google Scholar 

  • Meybeck, M. (1986). Composition chimique des ruisseaux nos pollués de France. Science Géologique Bulletin, 39, 3–77.

    Google Scholar 

  • Morey, G. W., Fournier, R. O., & Rowe, J. J. (1962). The solubility of quartz in water in the temperature interval from 25° to 300 °C. Geochimica et Cosmochimica Acta, 260(10), 1029–1040.

    Article  Google Scholar 

  • Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow R.C. Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early Warning and Assessment Report Series, RS. 03-3. United Nations Environment Programme, Nairobi, Kenya.

  • Muller, J. P., & Gavaud, M. (1979). Les sols. In: Atlas de la République unie du Cameroun (pp. 25–27). Paris: Jeune Afrique.

    Google Scholar 

  • Ngandeu Mboyo, J. D., Yongue-Fouateu, R., Yemefack, M., & Bilong, P. (2008). Variabilité spatiale de la productivité d’un Andosol Leptique de la région de Foumbot, Ouest Cameroun. Etude et Gestion des Sols, 15, 87–96.

    Google Scholar 

  • Njitchoua, R., & Ngounou-Ngatcha, B. (1997). Hydrogeochemistry and environmental isotopes investigations of the north Diamare plain northern Cameroon. Journal of African Earth Sciences, 25, 307–316.

    Article  Google Scholar 

  • Panno, S. V., Hackley, K. C., Hwang, H. H., & Kelly, W. R. (2001). Determination of the source of nitrate contamination in karst springs using isotopic and chemicals indicators. Chemical Geology, 179, 113–128.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphical interpretation of water-analysis. Transactions of the American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Praus, P. (2005). Water quality assessment using SVD-based principal component analysis of hydrological data. Water SA, 31, 417–422.

    CAS  Google Scholar 

  • Red Cross information (2004) Bulletin no. 3. http://www.ifrc.org/docs/appeals/rpts04/cm040914.pdf .

  • Regnoult, J. M. (1986). Synthèse Géologique du Cameroun (p. 119). Yaoundé, Cameroun: Ministère des Mines et de l’Energie.

    Google Scholar 

  • Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.p. 732). Inc: John Wiley & Sons.

    Book  Google Scholar 

  • Richards, L. A. (1954). Diagnostics and improvement of saline and alkali soil. US Department of Agriculture, p, 160.

  • Rozanski, K., Ara Araguas-Araguas, L., & Gonfiantini, R. (1993). Isotope patterns in modern global precipitation. In P. K. Swart, K. C. Lohmann, J. McKenzie, & S. Savin (Eds.), Climate change in continental isotopic records. Geophy. Mongr. Ser., Vol. 78 (pp. 1–36). Washington, DC: AGU.

    Chapter  Google Scholar 

  • Sato, H., Aramachi, S., Kusakabe, M., Hirabayashi, J., Sano, Y., Nojiri, Y., & Tchoua, F. (1990). Geochemical difference of basalts between poygenic and monogenic volcanoes in the central part of the Cameroon Volcanic Line. Geochemical Journal, 24, 357–370.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1967). Qualitative evaluation of ground water resources (in methods and techniques of groundwater investigations and development), water resources series, 33, UNESCO, pp 44–52.

  • Sigurdsson, H., Devine, J. D., Tchoua, F. M., Presser, T. S., Pringle, M . K. W., & Evans, W . C. (1987). Origin of the lethal gas burst from Lake Monoun, Cameroon. Journal of Volcanology and Geothermal Research, 31, 1–16

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Mettur taluk, Salem District, Tamil Nadu. Journal of Earth System Science, 117, 49–58.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarma, V. S. (2014). Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University-Science, 26, 37–52.

    Article  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon Basin. 2. The influence of the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137.

    Article  CAS  Google Scholar 

  • Tamma Rao, G., Gurunadha Rao, V. V. S., Srinivasa Rao, Y., & Ramesh, G. (2012). Study of hydrogeochemical processes of the groundwater in Ghatprabha river sub-basin, Bagalkot District, Karnataka. India. Arab J Geosci. doi:10.1007/s12517-012-0535-4.

    Google Scholar 

  • Tanyileke G (1994) Fluid geochemistry of CO2-rich lakes and soda springs along the Cameroon Volcanic Line, Cameroon. Ph.D Thesis, Graduate School of Natural Science and Technology, Okayama University, Japan.

  • Tardy, Y. (1971). Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7, 253–271.

    Article  CAS  Google Scholar 

  • USSL (United States Salinity Laboratory) (1954). Diagnosis and improvement of saline and alkaline soils. Washington: US Department of Agriculture.

    Google Scholar 

  • Wandji P (1985) Contribution à l’étude pétrologique, geochimique et geotechniquedes projections volcaniques de la région de Foumbot. Thèse Doct. 3e cycle, Université de Yaoundé, Cameroun.

  • WHO (World Health Organization) (2004). Guidelines for drinkingwater quality: training pack. Geneva: WHO.

    Google Scholar 

  • WHO/UNICEF (World Health Organization and United Nations Children’s Fund) (2008) Coverage estimates: improved sanitation, Cameroon. Joint monitoring programme for water supply and sanitation. http://documents.wssinfo.orgdownload/id_document.

  • Wirmvem, M. J., Ohba, T., Fantong, W. Y., Ayonghe, S. N., Suila, J. Y., Asaah, A. N. E., Asai, K., Tanyileke, G., & Hell, J. V. (2013a). Monthly δ18O, δD and Cl characteristics of precipitation in the Ndop plain, Northwest Cameroon: baseline data. Quaternary International. doi:10.1016/quaint.2013.07.009.

    Google Scholar 

  • Wirmvem, M. J., Ohba, T., Fantong, W. Y., Ayonghe, S. N., Suila, J. Y., Asaah, A. N. E., Tanyileke, G., & Hell, J. V. (2013b). Hydrogeochemistry of shallow groundwater and surface water in the Ndop plain, North West Cameroon. African Journal of Environmental Science and Technology, 7(6), 518–530.

    Article  CAS  Google Scholar 

  • Yidana, S. M., Banoeng-Yakubo, B., & Sakyi, P. A. (2012). Identifying key process in the hydrochemistry of a basin through the combined use of factor and regression models. Journal of Earth System Science, 121(2), 491–507.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant from Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) under the Science and Technology Research Partnership for Sustainable Development (SATREPS) project titled: Magmatic Fluid Supply into Lake Nyos and Monoun and Mitigation of Natural Disasters in Cameroon. Institute of Geological and Mining Research (IRGM) of Cameroon is highly acknowledged for providing logistics during sampling campaign. The manuscript was considerably improved by review comments from the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice T. Kamtchueng.

Electronic supplementary material

Online resource 1 (EMS_1)

Relative average concentration of silica and cations (mg/l) in various waters sources in the study area indicating that groundwater is chemically evolved relative to more diluted surface waters. (GIF 93 kb)

High resolution image (TIFF 88 kb)

Online resource 2 (EMS_2)

Chloroalkaline index 1 (a) and 2 (b) for water sources in Foumbot plain showing almost negative indices. (GIF 102 kb)

High resolution image (TIFF 100 kb)

Online resource 3 (EMS_3)

Impact of anthropogenic activities on water degradation in Foumbot plain. (GIF 486 kb)

High resolution image (TIFF 986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamtchueng, B.T., Fantong, W.Y., Wirmvem, M.J. et al. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization. Environ Monit Assess 188, 524 (2016). https://doi.org/10.1007/s10661-016-5514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5514-x

Keywords

Navigation