Environmental status and geochemical assessment sediments of Lake Skadar, Montenegro

Abstract

The environmental mobility and geochemical partitioning of ten metals were examined in sediments collected from the six locations around Lake Skadar in Montenegro. A three-step sequential extraction procedure was used to determine the distribution of the metals in various substrates of lacustrine sediments, and the concentrations were measured in the liquid extract by ICP-OES. The largest portion of the total amount of cadmium, strontium and manganese can be found in sediment bound to the hydrated iron and manganese oxides; cobalt, lead, copper and nickel in the oxidizable fraction and the highest portion of chromium, vanadium and zinc are in the residual fraction. The most mobilized and potentially mobile metals are strontium, cadmium and cobalt while the most immobilized metals are chromium, vanadium and zinc. Based on geochemical parameters, an assessment of sediment contamination by the investigated metals was performed and the results showed potential risks ranging from “no risk” to “low risk” to the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdel-Satar, A. M., & Goher, M. E. (2015). Heavy metals fractionation and risk assessment in surface sediments of Qarun and Wadi El-Rayan Lakes, Egypt. Environmental Monitoring and Assessment, 187 , 1–12.346

    CAS  Article  Google Scholar 

  2. Abolfazl, N., Ahmad, I., & Abdul, R. I. (2010). Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia. Microchemical Journal, 95, 285–292.

    Article  Google Scholar 

  3. Adami, G., Barbieri, P., & Reisenhofer, E. (2000). An improved index for monitoring metal pollutants in surface sediments. Toxicological and Environmental Chemistry, 77, 189–197.

    CAS  Article  Google Scholar 

  4. Amiard, J. C., Geffard, A., Amiard-Triquet, C., & Crouzet, C. (2007). Relationship between the lability of sediment-bound metals (Cd, Cu, Zn) and their bioaccumulation in benthic invertebrates. Estuarine, Coastal and Shelf Science, 72, 511–521.

    CAS  Article  Google Scholar 

  5. Andersson, P. S., Wasseerburg, G. J., Ingri, J., & Stordal, M. C. (1994). Strontium, dissolved particulate loads in fresh and brackish waters: the Baltic Sea and Mississippi Delta. Earth and Planetary Science Letters, 124, 195–210.

    CAS  Article  Google Scholar 

  6. Belazi, A. U., Davidson, C. M., Keating, G. E., Littlejohn, D., & McCartney, M. (1995). Determination and speciation of heavy metals in sediments from the Cumbrian coast, NW England, UK. Journal of Analytical Atomic Spectrometry, 10, 233–240.

    CAS  Article  Google Scholar 

  7. Birch, G. (2003). In C. D. Woodcoffe & R. A. Furness (Eds.), A scheme for assessing human impacts on coastal aquatic environments using sediments (p. 14). Australia: Wollongong University Papers in Center for Maritime Policy.

    Google Scholar 

  8. Chakravarty, M., & Patgiri, A. D. (2009). Metal pollution assessment in sediments of the Dikrong River, N.E. India. Journal of Human Ecology, 27, 63–67.

    Google Scholar 

  9. Davidson, C. M., Duncan, A. L., Litteljohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45–55.

    CAS  Article  Google Scholar 

  10. Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49, 910–915.

    CAS  Article  Google Scholar 

  11. Fernandez, E., Jimenez, R., Lallena, A. M., & Aguilar, J. (2004). Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environmental Pollution, 131, 355–364.

    CAS  Article  Google Scholar 

  12. Gao, X., Chen, C. T. A., Wang, G., Xue, Q., Tang, C., & Chen, S. (2010). Environmental status of Daya Bay surface sediment inferred from a sequential extraction technique. Estuar Coast Shelf S, 86, 369–378.

    CAS  Article  Google Scholar 

  13. Harikumar, P. S., & Jisha, T. S. (2010). Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. International Journal of Engineering, Science and Technology, 2, 840–850.

    Google Scholar 

  14. Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.

    CAS  Article  Google Scholar 

  15. Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the Tees estuary, north-east England. Marine Pollution Bulletin, 34, 768–779.

    CAS  Article  Google Scholar 

  16. Jović, M., Stanković, A., Slavković-Beskoski, L., Tomić, I., Degetto, S., & Stanković, S. (2011). Mussels as a bioindicator of the environmental quality of the coastal water of the Boka Kotorska Bay (Montenegro). Journal of the Serbian Chemical Society, 76, 933–946.

    Article  Google Scholar 

  17. Kastratović V, Đurović D, Krivokapić S, Mugoša B (2013) in Proceedings of 16th International Conference on Heavy Metals in the Environment. Rome, Italy, 33006 p. 1–4

  18. Li, X. D., Shen, Z. G., Wai, O. W. H., & Li, Y. S. (2001). Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River estuary. Marine Pollution Bulletin, 42, 215–223.

    CAS  Article  Google Scholar 

  19. Li, Q. S., ZF, W., Chu, B., Zhang, N., Cai, S. S., & Fang, J. H. (2007). Heavy metals in coastal wetland sediments of the Pearl River estuary, China. Environmental Pollution, 149, 158–164.

    CAS  Article  Google Scholar 

  20. Maiz, I., Arambarri, I., Garcia, R., & Millan, E. (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110, 3–9.

    CAS  Article  Google Scholar 

  21. Marković, A. D., Đarmati, A. M., & Gržetić, A. I. (1996). Physico-chemical basis of environment protection, Book II. Sources of pollution, effects and protection (pp. 210–225) . Serbia: University of Belgrade.in Serbian

    Google Scholar 

  22. Martin, J. M., & Meybeck, M. (1979). Elemental mass balance of materials carried by major world rivers. Marine Chemistry, 7, 173–206.

    CAS  Article  Google Scholar 

  23. Müller G (1979) Schwermetalle in den Sediment des Rheins. Veranderungen Seit 79:778–783

  24. Muller, G. (1981). Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chemiker-Zeitung, 105, 156–164.

    Google Scholar 

  25. Pakzad, H. R., Pasandi, M., Yeganeh, S., & Lahijani, H. (2016). Assessment of heavy metal enrichment in the offshore fine-grained sediments of the Caspian Sea. Environmental Monitoring and Assessment, 188, 303.

    Article  Google Scholar 

  26. Pardo, R., Barrado, E., Castrillejo, Y., Velasco, M. A., & Vega, M. (1993). Study of the contents and speciation of heavy metals in river sediments by factor analysis. Analytical Letters, 26, 1719–1739.

    CAS  Article  Google Scholar 

  27. Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and association of heavy metals in sediments of the Pisucraga river. Water Research, 24, 373–379.

    CAS  Article  Google Scholar 

  28. Passos, E. A., Alves, J. P. H., Garcia, C. A. B., & Costa, A. C. S. (2011). Metal fractionation in sediments of the Sergipe River, northeast, Brazil. Journal of the Brazilian Chemical Society, 22, 828–835.

    CAS  Google Scholar 

  29. Pempkowiak, J., Sikora, A., & Biernacka, E. (1999). Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere, 39, 313–321.

    CAS  Article  Google Scholar 

  30. Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanetta, M. L., & Oro, A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In T. D. Lakkas (Ed.), Heavy metals in the environment (Vol. 2). Edinburgh: CEP Consultants.

    Google Scholar 

  31. Petersen, W., Wallmann, K., Li, P. L., Schroeder, F., & Knauth, H. D. (1995). Exchange of trace elements of the sediment-water interface during early diagenesis processes. Marine and Freshwater Research, 46, 19–26.

    CAS  Google Scholar 

  32. Petrović, G. (1981). Chemichal investigations of water and sediments of Lake Skadar, the biota and limnology of Lake Skadar university of Michigan. Ann Arbor Michigan, U.S.A, 68–93.

  33. Pueyo, M., Sastre, J., Hernandez, E., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Environmental Quality, 32, 2054–2066.

    CAS  Article  Google Scholar 

  34. Rath, P., Panda, U. C., Bhatta, D., & Sahoo, B. N. (2005). Environmental quantification of heavy metals in the sediments of the Brahmani and Nandira rivers, Orissa. Journal of the Geological Society of India, 65, 487–492.

    CAS  Google Scholar 

  35. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. M., & Quevauviller, P. J. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    CAS  Article  Google Scholar 

  36. Sáenz, V., Blasco, J., & Gómez-Parra, A. (2003). Speciation of heavy metals in recent sediments of three coastal ecosystems in the Gulf of Cádiz, southwest Iberian peninsula. Environmental Toxicology and Chemistry, 22(12), 2833–2839.

    Article  Google Scholar 

  37. Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay. Environmental Geology, 3, 315–323.

    Article  Google Scholar 

  38. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution (p. 312). Carlton, England: Blackwell Scientific Publication.

    Google Scholar 

  39. Teng, Y., Yang, J., Sun, Z., Wang, J., Zuo, R., & Zheng, J. (2011). Environmental vanadium distribution, mobility and bioaccumulation in different land-use districts in Panzhihua region, SW China. Environmental Monitoring and Assessment, 176, 605–620.

    CAS  Article  Google Scholar 

  40. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    CAS  Article  Google Scholar 

  41. Tokalioğlu, S., Kartal, S., & Elcxi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413, 33–40.

    Article  Google Scholar 

  42. Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.

    Google Scholar 

  43. Umoren, I. U., Udoh, A. P., & Udousoro, I. I. (2007). Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb and Cd from refuse dump soils using the optimized BCR sequential extraction procedure. The Environmentalist, 27, 241–252.

    Article  Google Scholar 

  44. Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. Science of the Total Environment, 178, 3–10.

    CAS  Article  Google Scholar 

  45. USEPA Method 3051a. Microwave assisted acid digestion of sediments, sludges, soils and oils, Revision 1 (2007)

  46. Venkatramanan, S., Chung, S. Y., Ramkumar, T., & Selvam, S. (2015). Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River estuary in Tamil Nadu, India. Environmental Monitoring and Assessment, 187 , 1–16.505

    CAS  Article  Google Scholar 

  47. Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., & Liu, B. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. Journal of Environmental Sciences, 22, 23–31.

    Article  Google Scholar 

  48. Xu, Y., & Marcantonio, F. (2004). Speciation of strontium in particulates and sediments from the Mississippi River mixing zone. Geochimica et Cosmochimica Acta, 68, 2649–2657.

    CAS  Article  Google Scholar 

  49. Yobouet, Y. A., Adouby, K., Trokourey, A., & Yao, B. (2010). Cadmium, copper, lead and zinc speciation in contaminated soils. International Journal of Engineering, Science and Technology, 2, 802–812.

    Google Scholar 

  50. Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783.

    CAS  Article  Google Scholar 

  51. Zakir, H. M., Shikazono, N., & Otomo, K. (2008). Geochemical distribution of trace metals assessment of anthropogenic pollution in sediments of old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences, 4, 661–672.

    Google Scholar 

  52. Zakir, H. M., & Shikazono, N. (2011). Environmental mobility and geochemical partitioning of Fe, Mn, Co, Ni and Mo in sediments of an urban river. J Environ Chem Ecotoxicol, 3, 116–126.

    CAS  Google Scholar 

  53. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf S, 54, 1051–1070.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vlatko Kastratović.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kastratović, V., Jaćimović, Ž., Bigović, M. et al. Environmental status and geochemical assessment sediments of Lake Skadar, Montenegro. Environ Monit Assess 188, 449 (2016). https://doi.org/10.1007/s10661-016-5459-0

Download citation

Keywords

  • Lake Skadar
  • Sediment
  • Environmental status
  • Sequential extraction