Advertisement

Environmental status and geochemical assessment sediments of Lake Skadar, Montenegro

  • Vlatko KastratovićEmail author
  • Željko Jaćimović
  • Miljan Bigović
  • Dijana Đurović
  • Slađana Krivokapić
Article

Abstract

The environmental mobility and geochemical partitioning of ten metals were examined in sediments collected from the six locations around Lake Skadar in Montenegro. A three-step sequential extraction procedure was used to determine the distribution of the metals in various substrates of lacustrine sediments, and the concentrations were measured in the liquid extract by ICP-OES. The largest portion of the total amount of cadmium, strontium and manganese can be found in sediment bound to the hydrated iron and manganese oxides; cobalt, lead, copper and nickel in the oxidizable fraction and the highest portion of chromium, vanadium and zinc are in the residual fraction. The most mobilized and potentially mobile metals are strontium, cadmium and cobalt while the most immobilized metals are chromium, vanadium and zinc. Based on geochemical parameters, an assessment of sediment contamination by the investigated metals was performed and the results showed potential risks ranging from “no risk” to “low risk” to the environment.

Keywords

Lake Skadar Sediment Environmental status Sequential extraction 

References

  1. Abdel-Satar, A. M., & Goher, M. E. (2015). Heavy metals fractionation and risk assessment in surface sediments of Qarun and Wadi El-Rayan Lakes, Egypt. Environmental Monitoring and Assessment, 187 , 1–12.346 CrossRefGoogle Scholar
  2. Abolfazl, N., Ahmad, I., & Abdul, R. I. (2010). Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia. Microchemical Journal, 95, 285–292.CrossRefGoogle Scholar
  3. Adami, G., Barbieri, P., & Reisenhofer, E. (2000). An improved index for monitoring metal pollutants in surface sediments. Toxicological and Environmental Chemistry, 77, 189–197.CrossRefGoogle Scholar
  4. Amiard, J. C., Geffard, A., Amiard-Triquet, C., & Crouzet, C. (2007). Relationship between the lability of sediment-bound metals (Cd, Cu, Zn) and their bioaccumulation in benthic invertebrates. Estuarine, Coastal and Shelf Science, 72, 511–521.CrossRefGoogle Scholar
  5. Andersson, P. S., Wasseerburg, G. J., Ingri, J., & Stordal, M. C. (1994). Strontium, dissolved particulate loads in fresh and brackish waters: the Baltic Sea and Mississippi Delta. Earth and Planetary Science Letters, 124, 195–210.CrossRefGoogle Scholar
  6. Belazi, A. U., Davidson, C. M., Keating, G. E., Littlejohn, D., & McCartney, M. (1995). Determination and speciation of heavy metals in sediments from the Cumbrian coast, NW England, UK. Journal of Analytical Atomic Spectrometry, 10, 233–240.CrossRefGoogle Scholar
  7. Birch, G. (2003). In C. D. Woodcoffe & R. A. Furness (Eds.), A scheme for assessing human impacts on coastal aquatic environments using sediments (p. 14). Australia: Wollongong University Papers in Center for Maritime Policy.Google Scholar
  8. Chakravarty, M., & Patgiri, A. D. (2009). Metal pollution assessment in sediments of the Dikrong River, N.E. India. Journal of Human Ecology, 27, 63–67.Google Scholar
  9. Davidson, C. M., Duncan, A. L., Litteljohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45–55.CrossRefGoogle Scholar
  10. Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49, 910–915.CrossRefGoogle Scholar
  11. Fernandez, E., Jimenez, R., Lallena, A. M., & Aguilar, J. (2004). Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environmental Pollution, 131, 355–364.CrossRefGoogle Scholar
  12. Gao, X., Chen, C. T. A., Wang, G., Xue, Q., Tang, C., & Chen, S. (2010). Environmental status of Daya Bay surface sediment inferred from a sequential extraction technique. Estuar Coast Shelf S, 86, 369–378.CrossRefGoogle Scholar
  13. Harikumar, P. S., & Jisha, T. S. (2010). Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. International Journal of Engineering, Science and Technology, 2, 840–850.Google Scholar
  14. Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.CrossRefGoogle Scholar
  15. Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the Tees estuary, north-east England. Marine Pollution Bulletin, 34, 768–779.CrossRefGoogle Scholar
  16. Jović, M., Stanković, A., Slavković-Beskoski, L., Tomić, I., Degetto, S., & Stanković, S. (2011). Mussels as a bioindicator of the environmental quality of the coastal water of the Boka Kotorska Bay (Montenegro). Journal of the Serbian Chemical Society, 76, 933–946.CrossRefGoogle Scholar
  17. Kastratović V, Đurović D, Krivokapić S, Mugoša B (2013) in Proceedings of 16th International Conference on Heavy Metals in the Environment. Rome, Italy, 33006 p. 1–4Google Scholar
  18. Li, X. D., Shen, Z. G., Wai, O. W. H., & Li, Y. S. (2001). Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River estuary. Marine Pollution Bulletin, 42, 215–223.CrossRefGoogle Scholar
  19. Li, Q. S., ZF, W., Chu, B., Zhang, N., Cai, S. S., & Fang, J. H. (2007). Heavy metals in coastal wetland sediments of the Pearl River estuary, China. Environmental Pollution, 149, 158–164.CrossRefGoogle Scholar
  20. Maiz, I., Arambarri, I., Garcia, R., & Millan, E. (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110, 3–9.CrossRefGoogle Scholar
  21. Marković, A. D., Đarmati, A. M., & Gržetić, A. I. (1996). Physico-chemical basis of environment protection, Book II. Sources of pollution, effects and protection (pp. 210–225) . Serbia: University of Belgrade.in Serbian Google Scholar
  22. Martin, J. M., & Meybeck, M. (1979). Elemental mass balance of materials carried by major world rivers. Marine Chemistry, 7, 173–206.CrossRefGoogle Scholar
  23. Müller G (1979) Schwermetalle in den Sediment des Rheins. Veranderungen Seit 79:778–783Google Scholar
  24. Muller, G. (1981). Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chemiker-Zeitung, 105, 156–164.Google Scholar
  25. Pakzad, H. R., Pasandi, M., Yeganeh, S., & Lahijani, H. (2016). Assessment of heavy metal enrichment in the offshore fine-grained sediments of the Caspian Sea. Environmental Monitoring and Assessment, 188, 303.CrossRefGoogle Scholar
  26. Pardo, R., Barrado, E., Castrillejo, Y., Velasco, M. A., & Vega, M. (1993). Study of the contents and speciation of heavy metals in river sediments by factor analysis. Analytical Letters, 26, 1719–1739.CrossRefGoogle Scholar
  27. Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and association of heavy metals in sediments of the Pisucraga river. Water Research, 24, 373–379.CrossRefGoogle Scholar
  28. Passos, E. A., Alves, J. P. H., Garcia, C. A. B., & Costa, A. C. S. (2011). Metal fractionation in sediments of the Sergipe River, northeast, Brazil. Journal of the Brazilian Chemical Society, 22, 828–835.Google Scholar
  29. Pempkowiak, J., Sikora, A., & Biernacka, E. (1999). Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere, 39, 313–321.CrossRefGoogle Scholar
  30. Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanetta, M. L., & Oro, A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In T. D. Lakkas (Ed.), Heavy metals in the environment (Vol. 2). Edinburgh: CEP Consultants.Google Scholar
  31. Petersen, W., Wallmann, K., Li, P. L., Schroeder, F., & Knauth, H. D. (1995). Exchange of trace elements of the sediment-water interface during early diagenesis processes. Marine and Freshwater Research, 46, 19–26.Google Scholar
  32. Petrović, G. (1981). Chemichal investigations of water and sediments of Lake Skadar, the biota and limnology of Lake Skadar university of Michigan. Ann Arbor Michigan, U.S.A, 68–93.Google Scholar
  33. Pueyo, M., Sastre, J., Hernandez, E., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Environmental Quality, 32, 2054–2066.CrossRefGoogle Scholar
  34. Rath, P., Panda, U. C., Bhatta, D., & Sahoo, B. N. (2005). Environmental quantification of heavy metals in the sediments of the Brahmani and Nandira rivers, Orissa. Journal of the Geological Society of India, 65, 487–492.Google Scholar
  35. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. M., & Quevauviller, P. J. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.CrossRefGoogle Scholar
  36. Sáenz, V., Blasco, J., & Gómez-Parra, A. (2003). Speciation of heavy metals in recent sediments of three coastal ecosystems in the Gulf of Cádiz, southwest Iberian peninsula. Environmental Toxicology and Chemistry, 22(12), 2833–2839.CrossRefGoogle Scholar
  37. Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay. Environmental Geology, 3, 315–323.CrossRefGoogle Scholar
  38. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution (p. 312). Carlton, England: Blackwell Scientific Publication.Google Scholar
  39. Teng, Y., Yang, J., Sun, Z., Wang, J., Zuo, R., & Zheng, J. (2011). Environmental vanadium distribution, mobility and bioaccumulation in different land-use districts in Panzhihua region, SW China. Environmental Monitoring and Assessment, 176, 605–620.CrossRefGoogle Scholar
  40. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  41. Tokalioğlu, S., Kartal, S., & Elcxi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413, 33–40.CrossRefGoogle Scholar
  42. Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.Google Scholar
  43. Umoren, I. U., Udoh, A. P., & Udousoro, I. I. (2007). Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb and Cd from refuse dump soils using the optimized BCR sequential extraction procedure. The Environmentalist, 27, 241–252.CrossRefGoogle Scholar
  44. Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. Science of the Total Environment, 178, 3–10.CrossRefGoogle Scholar
  45. USEPA Method 3051a. Microwave assisted acid digestion of sediments, sludges, soils and oils, Revision 1 (2007)Google Scholar
  46. Venkatramanan, S., Chung, S. Y., Ramkumar, T., & Selvam, S. (2015). Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River estuary in Tamil Nadu, India. Environmental Monitoring and Assessment, 187 , 1–16.505 CrossRefGoogle Scholar
  47. Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., & Liu, B. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. Journal of Environmental Sciences, 22, 23–31.CrossRefGoogle Scholar
  48. Xu, Y., & Marcantonio, F. (2004). Speciation of strontium in particulates and sediments from the Mississippi River mixing zone. Geochimica et Cosmochimica Acta, 68, 2649–2657.CrossRefGoogle Scholar
  49. Yobouet, Y. A., Adouby, K., Trokourey, A., & Yao, B. (2010). Cadmium, copper, lead and zinc speciation in contaminated soils. International Journal of Engineering, Science and Technology, 2, 802–812.Google Scholar
  50. Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783.CrossRefGoogle Scholar
  51. Zakir, H. M., Shikazono, N., & Otomo, K. (2008). Geochemical distribution of trace metals assessment of anthropogenic pollution in sediments of old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences, 4, 661–672.Google Scholar
  52. Zakir, H. M., & Shikazono, N. (2011). Environmental mobility and geochemical partitioning of Fe, Mn, Co, Ni and Mo in sediments of an urban river. J Environ Chem Ecotoxicol, 3, 116–126.Google Scholar
  53. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf S, 54, 1051–1070.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vlatko Kastratović
    • 1
    Email author
  • Željko Jaćimović
    • 2
  • Miljan Bigović
    • 1
  • Dijana Đurović
    • 3
  • Slađana Krivokapić
    • 1
  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MontenegroPodgoricaMontenegro
  2. 2.Faculty of Technology and MetallurgyUniversity of MontenegroPodgoricaMontenegro
  3. 3.Institute of Public Health of MontenegroPodgoricaMontenegro

Personalised recommendations