Skip to main content

Advertisement

Log in

The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case. The empirical results show that the impacts of key environmental and socioeconomic factors varied in intensity depending on the type of land-use conversion involved. Overall, land suitability for agricultural uses, road density, elevation, and population growth were found to be significant predictors of land-use changes. High land suitability, low elevation, and moderate road density were associated with land conversion for agricultural purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AAFC. (2015a). Data product specifications: AAFC annual crop inventory. Available at: http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/aafcCropTypeMapping/en/ISO%2019131_AAFC_Annual_Crop_Inventory_Data_Product_Specifications.pdf. Accessed 7 May 2015.

  • AAFC. (2015b). Data product specifications: land use 1990, 2000, 2010. Available at: http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/aafcLand_Use/en/ISO_19131_Land_Use_1990__2000_2010_Data_Product_Specifications.pdf. Accessed 7 May 2015.

  • Anselin, L. (1988). Spatial econometrics: methods and models. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Anselin, L. (2002). Under the hood—issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267.

    Article  Google Scholar 

  • Baumann, M., Kuemmerle, T., Elbakidze, M., Ozdogan, M., Radeloff, V. C., Keuler, N. S., Prishchepov, A. V., Kruhlov, I., & Hostert, P. (2011). Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 28(3), 552–562.

    Article  Google Scholar 

  • Bawa, K. S., Joseph, G., & Setty, S. (2007). Poverty, biodiversity and institutions in forest-agriculture ecotones in the Western Ghats and Eastern Himalaya ranges of India. Agriculture Ecosystems & Environment, 121(3), 287–295.

    Article  Google Scholar 

  • Begue, A., Vintrou, E., Ruelland, D., Claden, M., & Dessay, N. (2011). Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach. Global Environmental Change-Human and Policy Dimensions, 21(2), 413–420.

    Article  Google Scholar 

  • Bennett, D. R., Heikkila, R., Riewe, R. V., Oyewumi, O., & Harms, T. E. (2013). Farm economic impacts of water supply deficits for two irrigation expansion scenarios in Alberta. Canadian Water Resources Journal, 38(3), 210–222.

    Article  Google Scholar 

  • Carew, R., Florkowski, W. J., & Zhang, Y. (2013). Review: Industry levy-funded pulse crop research in Canada: evidence from the prairie provinces. Canadian Journal of Plant Science, 93(6), 1017–1028.

    Article  Google Scholar 

  • Carrion-Flores, C., & Irwin, E. G. (2004). Determinants of residential land-use conversion and sprawl at the rural-urban fringe. American Journal of Agricultural Economics, 86(4), 889–904.

    Article  Google Scholar 

  • Chakir, R., & Parent, O. (2009). Determinants of land use changes: a spatial multinomial probit approach. Papers in Regional Science, 88(2), 327–345.

    Article  Google Scholar 

  • Chowdhury, R. R. (2006). Landscape change in the Calakmul Biosphere Reserve, Mexico: modeling the driving forces of smallholder deforestation in land parcels. Applied Geography, 26(2), 129–152.

    Article  Google Scholar 

  • Deng, X., Liu, J., Zhuang, D., Zhan, J., & Zhao, T. (2002). Modeling the relationship of land use change and some geophysical indicators for the interlock area of farming and pasturing in China. Journal of Geographical Science, 12(4), 397–404.

    Article  Google Scholar 

  • Deng, X., Huang, J., Rozelle, S., & Uchida, E. (2008). Growth, population and industrialization, and urban land expansion of China. Journal of Urban Economics, 63(1), 96–115.

    Article  Google Scholar 

  • Deng, X., Huang, J., Uchida, E., Rozelle, S., & Gibson, J. (2011). Pressure cookers or pressure valves: do roads lead to deforestation in China? Journal of Environmental Economics and Management, 61(1), 79–94.

    Article  Google Scholar 

  • Duram, L. A., Bathgate, J., & Ray, C. (2004). A local example of land-use change: Southern Illinois—1807, 1938, and 1993. Professional Geographer, 56(1), 127–140.

    Google Scholar 

  • Fearnside, P. M. (2000). Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46(1–2), 115–158.

    Article  CAS  Google Scholar 

  • Government of Alberta. (2008). Land use framework. Available at: https://www.landuse.alberta.ca/Documents/LUF_Land-use_Framework_Report-2008-12.pdf. Accessed 7 May 2015.

  • Government of Alberta. (2011). Sustainable forest management. Available at: http://esrd.alberta.ca/lands-forests/forest-management/forest-management-facts-statistics/documents/GeneralBoundary-CurrentFactsAndStatistics-2011.pdf. Last accessed 12 Nov 2014.

  • Government of Alberta. (2014a). Agri-food. Available at: http://www.albertacanada.com/business/industries/agrifood.aspx. Accessed 12 Nov 2014.

  • Government of Alberta. (2014b). Economic results. Available at: http://www.albertacanada.com/business/overview/economic-results.aspx. Accessed 12 Nov 2014.

  • Government of Alberta. (2014c). Population projection Alberta 2014–2041. Available at: http://finance.alberta.ca/aboutalberta/population-projections/2014-2041-alberta-population-projections.pdf. Accessed 12 Nov 2014.

  • Government of Alberta. (2014d). South Saskatchewan regional plan 2014–2024. Available at: https://landuse.alberta.ca/LandUse%20Documents/SSRP%20Final%20Document_2014-07.pdf. Accessed 20 May 2014.

  • Haarsma, D., & Qiu, F. (2015). Assessing neighbor and population growth influences on agricultural land conversion. Applied Spatial Analysis and Policy. doi:10.1007/s12061-015-9172-0.

    Google Scholar 

  • Hall, B., Motzkin, G., Foster, D. R., Syfert, M., & Burk, J. (2002). Three hundred years of forest and land-use change in Massachusetts, USA. Journal of Biogeography, 29(10–11), 1319–1335.

    Article  Google Scholar 

  • Heilig, G. K. (1997). Anthropogenic factors in land-use change in China. Population and Development Review, 23(1), 139.

    Article  Google Scholar 

  • Houck, J. P., & Ryan, M. E. (1972). Supply analysis for corn in the United States: the impact of changing government programs. American Journal of Agricultural Economics, 54(2), 184.

    Article  Google Scholar 

  • Jaeger, J. A. G., Schwarz-von Raumer, H. G., Esswein, H., Mueller, M., & Schmidt-Luettman, M. (2007). Time series of landscape fragmentation caused by transportation infrastructure and urban development: a case study from Baden-Wurttemberg, Germany. Ecology and Society, 12(1), 22–49.

    Google Scholar 

  • Jiang, L., Deng, X., & Seto, K. C. (2012). Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landscape and Urban Planning, 108(2–4), 131–139.

    Article  Google Scholar 

  • Klier, T., & McMillen, D. P. (2008). Clustering of auto supplier plants in the United States: generalized method of moments spatial logit for large samples. Journal of Business & Economic Statistics, 26(4), 460–471.

    Article  Google Scholar 

  • Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm. Ecology, 74(6), 1659–1673.

    Article  Google Scholar 

  • LeSage, J., & Pace, R. (2009). Introduction to spatial econometrics. Boca Raton: CRC.

    Book  Google Scholar 

  • Li, M., Wu, J., & Deng, X. (2013). Identifying drivers of land use change in China: a spatial multinomial logit model analysis. Land Economics, 89(4), 632–654.

    Article  Google Scholar 

  • Liang, J. (2012). Mapping large-scale forest dynamics: a geospatial approach. Landscape Ecology, 27(8), 1091–1108.

    Article  Google Scholar 

  • Lichtenberg, E., & Ding, C. (2009). Local officials as land developers: urban spatial expansion in China. Journal of Urban Economics, 66(1), 57–64.

    Article  Google Scholar 

  • Lidman, R., & Bawden, D. L. (1974). Impact of government programs on wheat acreage. Land Economics, 50(4), 327–335.

    Article  Google Scholar 

  • Luo, J., & Wei, Y. H. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landscape and Urban Planning, 91(2), 51–64.

    Article  Google Scholar 

  • Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Matlack, G. R. (1997). Four centuries of forest clearance and regeneration in the hinterland of a large city. Journal of Biogeography, 24(3), 281–295.

    Article  Google Scholar 

  • McMillen, D. P. (1989). An empirical model of urban fringe land use. Land Economics, 65(2), 138–145.

    Article  Google Scholar 

  • McMillen, D. P. (1992). Probit with spatial autocorrelation. Journal of Regional Science, 32(3), 335–348.

    Article  Google Scholar 

  • Miles, L., & Kapos, V. (2008). Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications. Science, 320(5882), 1454–1455.

    Article  CAS  Google Scholar 

  • Miranda, M. J., Novak, F., & Lerohl, M. (1994). Acreage response under Canada’s western grain stabilization program. American Journal of Agricultural Economics, 76(2), 270–276.

    Article  Google Scholar 

  • Moore, M. R., & Negri, D. H. (1992). A multicrop production model of irrigated agriculture, applied to water allocation policy of the bureau of reclamation. Journal of Agricultural and Resource Economics, 17(1), 29–43.

    CAS  Google Scholar 

  • Plantinga, A. J., Mauldin, T., & Miller, D. J. (1999). An econometric analysis of the costs of sequestering carbon in forests. American Journal of Agricultural Economics, 81(4), 812–824.

    Article  Google Scholar 

  • Qasim, M., Hubacek, K., & Termansen, M. (2013). Underlying and proximate driving causes of land use change in district Swat, Pakistan. Land Use Policy, 34, 146–157.

    Article  Google Scholar 

  • Qiu, F., Laliberte, L., Swallow, B., & Jeffrey, S. (2015). Impacts of fragmentation and neighbor influence on farmland conversion. Land Use Policy, 48, 482–294.

    Article  Google Scholar 

  • Rashford, B. S., Bastian, C. T., & Cole, J. G. (2011). Agricultural land-use change in Prairie Canada: implications for wetland and waterfowl habitat conservation. Canadian Journal of Agricultural Economics-Revue Canadienne D Agroeconomie, 59(2), 185–205.

    Article  Google Scholar 

  • Reidsma, P., Tekelenburg, T., van den Berg, M., & Alkemade, R. (2006). Impacts of land-use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agriculture Ecosystems & Environment, 114(1), 86–102.

    Article  Google Scholar 

  • Robson, J. P., & Berkes, F. (2011). Exploring some of the myths of land use change: can rural to urban migration drive declines in biodiversity? Global Environmental Change-Human and Policy Dimensions, 21(3), 844–854.

    Article  Google Scholar 

  • Samarawickrema, A., & Kulshreshtha, S. (2008). Value of irrigation water for drought proofing in the South Saskatchewan River Basin (Alberta). Canadian Water Resources Journal, 33(3), 273–281.

    Article  Google Scholar 

  • Schneider, L. C., & Pontius, R. G. (2001). Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture Ecosystems & Environment, 85(1–3), 83–94.

    Article  Google Scholar 

  • Schweizer, P. E., & Matlack, G. R. (2014). Factors driving land use change and forest distribution on the coastal plain of Mississippi, USA. Landscape and Urban Planning, 121, 55–64.

    Article  Google Scholar 

  • Sen, G., Bayramoglu, M. M., & Toksoy, D. (2015). Spatiotemporal changes of land use patterns in high mountain areas of Northeast Turkey: a case study in Macka. Environmental Monitoring and Assessment, 187(8).

  • Su, S., Xiao, R., & Zhang, Y. (2012). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32(2), 360–375.

    Article  Google Scholar 

  • Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39.

    Article  Google Scholar 

  • Sun, H., Forsythe, W., & Waters, N. (2007). Modeling urban land use change and urban sprawl: Calgary, Alberta, Canada. Networks & Spatial Economics, 7(4), 353–376.

    Article  Google Scholar 

  • Tao, F., Yokozawa, M., Liu, J., & Zhang, Z. (2008). Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research, 38(1), 83–94.

    Article  Google Scholar 

  • Tilman, D. (1999). Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 5995–6000.

    Article  CAS  Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • Upton, V., O’Donoghue, C., & Ryan, M. (2014). The physical, economic and policy drivers of land conversion to forestry in Ireland. Journal of Environmental Management, 132, 79–86.

    Article  Google Scholar 

  • Ureta, C., Gonzalez-Salazar, C., Gonzalez, E. J., Alvarez-Buylla, E. R., & Martinez-Meyer, E. (2013). Environmental and social factors account for Mexican maize richness and distribution: a data mining approach. Agriculture Ecosystems & Environment, 179, 25–34.

    Article  Google Scholar 

  • Van Doorn, A. M., & Bakker, M. M. (2007). The destination of arable land in a marginal agricultural landscape in South Portugal: an exploration of land use change determinants. Landscape Ecology, 22(7), 1073–1087.

    Article  Google Scholar 

  • Wang, H. Q., Hall, C. A. S., Cornell, J. D., & Hall, M. H. P. (2002). Spatial dependence and the relationship of soil organic carbon and soil moisture in the Luquillo Experimental Forest, Puerto Rico. Landscape Ecology, 17(8), 671–684.

    Article  Google Scholar 

  • Wang, J., Mendelsohn, R., Dinar, A., Huang, J., Rozelle, S., & Zhang, L. (2009). The impact of climate change on China’s agriculture. Agricultural Economics, 40(3), 323–337.

    Article  Google Scholar 

  • Wang, H., Qiu, F., & Ruan, X. (2016). Loss or gain: a spatial regression analysis of switching land conversion between agriculture and natural land. Agriculture Ecosystems and Environment, 221, 222–234.

    Article  Google Scholar 

  • Wu, J., & Adams, R. M. (2001). Production risk, acreage decisions and implications for revenue insurance programs. Canadian Journal of Agricultural Economics-Revue Canadienne D’Agroeconomie, 49(1), 19–35.

    Article  Google Scholar 

  • Wu, J., & Brorsen, B. W. (1995). The impact of government programs and land characteristics on cropping patterns. Canadian Journal of Agricultural Economics-Revue Canadienne D’Economie Rurale, 43(1), 87–104.

    Article  Google Scholar 

  • Wu, F., & Webster, C. J. (1998). Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B-Planning & Design, 25(1), 103–126.

    Article  Google Scholar 

  • Wu, J., Adams, R. M., Kling, C. L., & Tanaka, K. (2004). From microlevel decisions to landscape changes: an assessment of agricultural conservation policies. American Journal of Agricultural Economics, 86(1), 26–41.

    Article  Google Scholar 

  • Xie, H., Liu, Z., Wang, P., Liu, G., & Lu, F. (2014). Exploring the mechanisms of ecological land change based on the spatial autoregressive model: a case study of the Poyang Lake Eco-Economic Zone, China. International Journal of Environmental Research and Public Health, 11(1), 583–599.

    Article  Google Scholar 

  • You, L., Rosegrant, M. W., Wood, S., & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149(6–7), 1009–1014.

    Article  Google Scholar 

  • Young, J. E., Sanchez-Azofeifa, G. A., Hannon, S. J., & Chapman, R. (2006). Trends in land cover change and isolation of protected areas at the interface of the southern boreal mixedwood and aspen parkland in Alberta, Canada. Forest Ecology and Management, 230(1–3), 151–161.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Ralph Wright in Alberta Agriculture and Rural Development for providing the historical weather data. The Alberta Land Institute (ALI) provides the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ruan.

Appendix

Appendix

(Table 10).

Table 10 The marginal effects on the cropland conversion in the SAC model
Table 11 The marginal effects on the pasture conversion in the SAC model
Table 12 The marginal effects on the natural land conversion in the SAC model
Table 13 The marginal effects on the developed area conversion in the SAC model

(Fig. 6).

Fig. 6
figure 6

Cropland hectares converted into pasture at the township level

Fig. 7
figure 7

Cropland hectares converted into natural land at the township level

Fig. 8
figure 8

Cropland hectares converted into developed land at the township level

Fig. 9
figure 9

Pasture hectares converted into cropland at the township level

Fig. 10
figure 10

Pasture hectares converted into natural land at the township level

Fig. 11
figure 11

Pasture hectares converted into developed land at the township level

Fig. 12
figure 12

Nature land hectares converted into cropland at the township level

Fig. 13
figure 13

Nature land hectares converted into pasture at the township level

Fig. 14
figure 14

Nature land hectares converted into developed land at the township level

Fig. 15
figure 15

Developed land hectares converted into cropland at the township level

Fig. 16
figure 16

Developed land hectares converted into pasture at the township level

Fig. 17
figure 17

Developed land hectares converted into natural land at the township level

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, X., Qiu, F. & Dyck, M. The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada. Environ Monit Assess 188, 446 (2016). https://doi.org/10.1007/s10661-016-5450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5450-9

Keywords

Navigation