Abstract
An analytical method was established and validated for the analysis of steroidal oestrogens in tap water samples. Gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) were used for the identification/quantification of selected compounds and the analytical performance of these techniques was evaluated. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) stationary phase that was highly selective for oestrogens were used for the extraction of 100-mL aliquots of water samples. The recoveries of analytes with the described methods ranged from 92 to 114 %, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 2.1 to 15.2 % (n = 5). It was concluded that SPE with MIP that was highly selective for oestrogens in combination with GC-HRMS detection is more preferable for the analysis of oestrogens in tap water samples. The typical oestrogen, 17β-estradiol (17β-E2), was detected above the method limit of quantification (m-LOQ) in 5 of 14 analysed tap water samples at concentrations from 0.09 to 0.15 ng L−1. Despite that 17α-ethynylestradiol (17α-EE2) was not quantified in this study above m-LOQ, the presence of this chemical was qualitatively confirmed in some of the analysed samples.
This is a preview of subscription content, access via your institution.



References
Adler, P., Steger-Hartmann, T., & Kalbfus, W. (2001). Vorkommen natürlicher und synthetischer östrogener Steroide in Wässern des süd- und mitteldeutschen Raumes. Acta Hydrochimica et Hydrobiologica. doi:10.1002/1521-401X(200111)29:4<227::AID-AHEH227>3.0.CO;2-R.
Andersson, A. M., & Skakkebaek, N. E. (1999). Exposure to exogenous estrogens in food: possible impact on human development and health. European Journal of Endocrinology. doi:10.1530/eje.0.1400477.
Avery, M. J. (2003). Quantitative characterization of differential ion suppression on liquid chromatography/atmospheric pressure ionization mass spectrometric bioanalytical methods. Rapid Communications in Mass Spectrometry. doi:10.1002/rcm.895.
Barreiros, L., Queiroz, J. F., Magalhaes, L. M., Silva, A. M. T., & Segundo, M. A. (2016). Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices—a review. Microchemical Journal. doi:10.1016/j.microc.2015.12.003.
Beardmore, J. A., Mair, G. C., & Lewis, R. I. (2001). Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture. doi:10.1016/S0044-8486(01)00590-7.
Bila, D., Montalvao, A.F., Azevedo, D. de A., & Dezotti, M. (2007). Estrogenic activity removal of 17-estradiol by ozonation and identification of by-products. Chemosphere, doi:10.1016/j.chemosphere.2007.05.016.
Bouman, A., Heineman, M.J., & M.M. Faas, M.M. (2005). Sex hormones and the immune response in humans. Human Reproduction Update, doi:10.1093/humupd/dmi008.
Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS (SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. The Science of the Total Environment. doi:10.1016/j.scitotenv.2015.08.076.
Camilleri, J., Baudot, R., Wiest, L., Vulliet, E., Cren-Olive, C., & Daniele, G. (2015). Multiresidue fully automated online SPE-HPLC-MS/MS method for the quantification of endocrine-disrupting and pharmaceutical compounds at trace level in surface water. International Journal of Environmental Analytical Chemistry. doi:10.1080/03067319.2014.983494.
D’Ascenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., et al. (2007). Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. The Science of the Total Environment. doi:10.1016/S0048-9697(02)00342-X.
Diaz-Cruz, M. S., de Alda, M. J. L., Lopez, R., & Barcelo, D. (2003). Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). Journal of Mass Spectrometry. doi:10.1002/jms.529.
European Commission (2014). Commission regulation 589/2014 of 2 June 2014 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing regulation (EU) no 252/2012. Official Journal of the European Commission, L164, 18–40.
European Commission (2013). Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Commission, L226, 1–17.
Fine, D. D., Breidenbach, G. P., Price, T. L., & Hutchins, S. R. (2003). Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography–negative ion chemical ionization tandem mass spectrometry. Journal of Chromatography A. doi:10.1016/j.chroma.2003.08.021.
Foreman, W.T., Gray, J.L., Revello, R.C., Lindley, C.E., & Losche, S.A. (2013). An isotope-dilution standard GC/MS/MS method for steroid hormones in water. In: Evaluating Veterinary Pharmaceutical Behavior in the Environment, ACS, Washington, DC.
Gomes, R. L., Scrimshaw, M. D., & Lester, J. N. (2003). Determination of endocrine disrupters in sewage treatment and receiving waters. Trends in Analytical Chemistry. doi:10.1016/S0165-9936(03)01010-0.
Kelly, C. (2000). Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography–mass spectrometry and gas chromatography–tandem mass spectrometry. Journal of Chromatography A. doi:10.1016/S0021-9673(99)01261-3.
Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.0609568104.
Kozlowska-Tylingo, K., Konieczka, P., Gustaw, E., Wasik, A., & Namiesnik, J. (2014). Comparison of high performance liquid chromatography methods with different detectors for determination of steroid hormones in aqueous matrices. Analytical Letters. doi:10.1080/00032719.2013.874014.
Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science and Technology. doi:10.1021/es010034m.
Kumar, R., Gaurav, H., Malik, A. K., Kabir, A., & Furton, K. G. (2014). Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. Journal of Chromatography A. doi:10.1016/j.chroma.2014.07.013.
Lin, Y., Shi, Y., Jiang, M., Jin, Y., Peng, Y., Lu, B., et al. (2008). Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environmental Pollution. doi:10.1016/j.envpol.2007.08.001.
Lucci, P., Nunez, O., & Galceran, M. T. (2011). Solid-phase extraction using molecularly imprinted polymer for selective extraction of natural and synthetic estrogens from aqueous samples. Journal of Chromatography A. doi:10.1016/j.chroma.2011.02.007.
Matsui, S., Takigami, H., Matsuda, T., Taniguchi, N., Adachi, J., Kawami, H., et al. (2000). Estrogen and estrogen mimics contamination in water and the role of sewage treatment. Water Science and Technology, 42(12), 173.
Meng, Z., Chen, W., & Mulchandani, A. (2005). Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environmental Science and Technology. doi:10.1021/es0505292.
Mills, L. J., & Chichester, C. (2005). Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? The Science of the Total Environment. doi:10.1016/j.scitotenv.2004.12.070.
Noppe, H., de Wasch, K., Poelmans, S., van Hoof, N., Verslycke, T., Janssen, C. R., et al. (2005). Development and validation of an analytical method for detection of estrogens in water. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-005-3174-8.
Organtini, K. L., Haimovici, L., Jobst, K. J., Reiner, E. J., Ladak, A., Stevens, D., et al. (2015). Comparison of atmospheric pressure ionization gas chromatography-triple quadrupole mass spectrometry to traditional high-resolution mass spectrometry for the identification and quantification of halogenated dioxins and furans. Analytical Chemistry. doi:10.1021/acs.analchem.5b01705.
Sanbe, H., & Haginaka, J. (2003). Uniformly sized molecularly imprinted polymers for bisphenol A and b-estradiol: retention and molecular recognition properties in hydro-organic mobile phases. Journal of Pharmaceutical and Biomedical Analysis. doi:10.1016/S0731-7085(02)00526-5.
Sojo, L., Lum, G., & Chee, P. (2003). Internal standard signal suppression by co-eluting analyte in isotope dilution LC-ESI-MS. Analyst. doi:10.1039/B209521C.
Solomon, G. M., & Schettler, T. (2000). Environment and health: 6. Endocrine disruption and potential human health implications. Canadian Medical Association Journal, 163, 1471–1476.
U.S. EPA Method 1698 (2007). Steroids and hormones in water, soil, sediment, and biosolids by HRGC/HRMS. Washington, D.C.: USEPA Office of science and technology engineering and analysis division.
Van Hout, M., Niederlander, H., de Zeeuw, R., & de Jong, G. (2003). Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionisation ion-trap mass spectrometry. Rapid Communications in Mass Spectrometry. doi:10.1002/rcm.908.
Acknowledgments
This study has received funding from the project “Establishing of the scientific capacity for the management of pharmaceutical products residues in the environment of Latvia and Norway” co-financed by Norwegian Financial Mechanism 2009–2014, Contract No. NFI/R/2014/010.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zacs, D., Perkons, I. & Bartkevics, V. Determination of steroidal oestrogens in tap water samples using solid-phase extraction on a molecularly imprinted polymer sorbent and quantification with gas chromatography-mass spectrometry (GC-MS). Environ Monit Assess 188, 433 (2016). https://doi.org/10.1007/s10661-016-5435-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-016-5435-8