Skip to main content

Response of macrophyte communities to flow regulation in mountain streams

Abstract

River macrophytes are widely used in freshwater ecosystem assessment because of their sensitivity to anthropogenic pressures, even if there are only a few studies that investigated how macrophytes respond to water regime alterations. In this study, we analyzed the effects of dams on river macrophyte communities through a comparison between upstream and downstream sides from 18 dams located in Alps and Apennines. A co-inertia analysis and a Mantel test were applied to assess if the analysis of environmental parameters could be effective in predicting macrophyte community structure. We analyzed morphological and physicochemical inter-site differences and tested the influence of dams on various aspects of community structure (composition, richness, diversity, dominance, coverage) using multivariate randomized block permutation procedure. Plant similarity between sites was evaluated at the level of phylum, and indicator species analysis was performed to identify the taxa most sensitive or tolerant to water regulation. We found that the overall environmental setting overwhelms the dam impact and that the influence of hydrological alteration became apparent when comparing upstream and downstream assemblages at the same dam. In particular, we found that most of taxa had a higher affinity with the downstream side and that in general, stream regulation increases plant richness and coverage, but reduces community evenness. Analyses based on higher taxonomic groups (phyla) demonstrated that this community can be effectively used in bioassessment even at phylum level analysis. In particular, we found that bryophytes, strictly linked with changes in substrate stability, show particular sensitivity to water regulation in mountain streams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arthington, A. H., King, J. M., O’Keeffe, J. H., Bunn, S. E., Day, J. A., Pusey, et al. (1992). Development of an holistic approach for assessing environmental flow requirements of riverine ecosystems. In J. J. Pilgram & B. P. Hooper (Eds.), Water allocation for the environment (pp. 69–76). Australia: The Centre for Water Policy Research, University of New England.

    Google Scholar 

  2. Baattrup-Pedersen, A., & Riis, T. (1999). Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology, 42(2), 375–385.

    Article  Google Scholar 

  3. Barendregt, A., & Bio, A. M. F. (2003). Relevant variables to predict macrophyte communities in running waters. Ecological Modelling, 160, 205–217.

    Article  Google Scholar 

  4. Benítez-Mora, A., & Camargo, J. A. (2014). Ecological responses of aquatic macrophytes and benthic macroinvertebrates to dams in the Henares River Basin (Central Spain). Hydrobiologia, 728, 167–178.

    Article  Google Scholar 

  5. Bernez, I., & Ferreira, T. (2007). River macrophytes in regulated mediterranean-type rivers of southern Portugal. Belgian Journal of Botany, 140(1), 136–139.

    Google Scholar 

  6. Bernez, I., Daniel, H., Haury, J., & Ferreira, M. T. (2004). Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in western France. River Research and Applications, 20, 43–59.

    Article  Google Scholar 

  7. Biggs, B. J. F. (1996). Hydraulic habitat of plants in streams. Regulated Rivers: Research & Management, 12, 131–144.

    Article  Google Scholar 

  8. Brookes, A. (1994). River channel change. In P. Calow & G. E. Petts (Eds.), The rivers handbook vol 2 (pp. 55–75). London: Blackwell Scientific Publications.

    Chapter  Google Scholar 

  9. Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492–507.

    Article  Google Scholar 

  10. Casanova, M. T., & Brock, M. A. (2000). How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147, 237–250.

    Article  Google Scholar 

  11. Ceschin, S., Aleffi, M., Bisceglie, S., Savo, V., & Zuccarello, V. (2012). Aquatic bryophytes as ecological indicators of the water quality status in the Tiber river basin (Italy). Ecological Indicators, 14, 74–81.

    CAS  Article  Google Scholar 

  12. Ceschin, S., Minciardi, M. R., Spada, C. D., & Abati, S. (2015). Bryophytes of Alpine and Apennine mountain streams: floristic features and ecological notes. Cryptogamie Bryologie, 36(3), 1–17.

    Article  Google Scholar 

  13. Daniel, H., Bernez, I., & Haury, J. (2006). Relationships between macrophytic vegetation and physical features of river habitats: the need for a morphological approach. Hydrobiologia, 270, 11–17.

    Google Scholar 

  14. De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684.

    Article  Google Scholar 

  15. Demars, B. O. L., Potts, J. M., Trémolières, M., Thiébaut, G., Gougelin, N., & Nordmann, V. (2012). River macrophyte indices: not the Holy Grail. Freshwater Biology, 57, 1745–1759.

    Article  Google Scholar 

  16. Dolédec, S., & Chessel, D. (1994). Co-inertia analysis: an alternative method to study species-environment relationships. Freshwater Biology, 31, 277–294.

    Article  Google Scholar 

  17. Downes, B. J., Entwisle, T. J., & Reich, P. (2003). Effects of flow regulation on disturbance frequencies and in-channel bryophytes and macroalgae in some upland streams. River Research and Applications, 19, 27–42.

    Article  Google Scholar 

  18. Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366.

    Google Scholar 

  19. Englund, G., Jonsson, B. G., & Malmqvist, B. (1997). Effects of flow regulation on bryophytes in north Swedish rivers. Biological Conservation, 79(1), 79–86.

    Article  Google Scholar 

  20. European Union (2013). Commission Decision 2013/480/EU establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Decision 2008/915/EC.

  21. Fayolle, S., Cazaubon, A., Comte, K., & Franquet, E. (1998). The intermediate disturbance hypothesis: application of this concept to the response of epilithon in a regulated Mediterranean river (Lower-Durance, southeastern France). Archiv Fur Hydrobiologie, 143, 57–77.

    Article  Google Scholar 

  22. Ferreira, M. T., & Moreira, I. S. (1999). River plants from an Iberian basin and environmental factors influencing their distribution. Hydrobiologia, 415, 101–107.

    Article  Google Scholar 

  23. Ferreira, M. T., Rodríguez-González, P., Aguiar, F. C., & Albuquerque, A. (2005). Assessing biotic integrity in Iberian rivers: development of a multimetric plant index. Ecological Indicators, 5, 137–149.

    Article  Google Scholar 

  24. Franklin, P., Dunbar, M. J., & Whitehead, P. (2008). Flow controls on lowland river macrophytes: a review. The Science of the Total Environment, 400, 369–378.

    CAS  Article  Google Scholar 

  25. Friberg, N., O’Hare, M. T., & Poulsen, A. M. (Eds.) (2013). Impacts of hydromorphological degradation and disturbed sediment dynamics on ecological status. REstoring rivers FOR effective catchment Management Project. Deliverable D3.1.

  26. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  27. Haslam, S. M. (1978). River plants: the macrophytic vegetation of watercourses. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Haury, J., Peltre, M. C., Muller, S., Tremolieres, M., Barbe, J., Dutartre, A., et al. (1996). Des indices macrophytiques pour estimer la qualitè des cours d’eau francais: premieres propositions. Ecologie, 27, 233–244.

    Google Scholar 

  29. Hayek, L. C., & Buzas, M. A. (2010). Surveying natural populations. New York: Columbia U Press.

    Google Scholar 

  30. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2, e124.

    Article  Google Scholar 

  31. Janauer, G. A., Schmidt-Mumm, U., & Schmidt, B. (2010). Aquatic macrophytes and water current velocity in the Danube River. Ecological Engineering, 36, 1138–1145.

    Article  Google Scholar 

  32. Jowett, I. G., & Biggs, B. J. F. (2008). Application of the ‘natural flow paradigm’ in a New Zealand context. River Research and Applications, 25, 1126–1135.

    Article  Google Scholar 

  33. Lowe, R. L. (1979). Phytobenthic ecology and regulated streams. In J. V. Ward & J. A. Standford (Eds.), The ecology of regulated rivers (pp. 25–34). New York: Plenum Press.

    Chapter  Google Scholar 

  34. Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71–84.

    Article  Google Scholar 

  35. Mebane, C. A., Simon, N. S., & Maret, T. R. (2014). Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia, 722, 143–158.

    CAS  Article  Google Scholar 

  36. Mielke, P. W., Berry, K. J., & Johnson, E. S. (1976). Multi-response permutation procedures for a priori classifications. Communications in Statistics – Theory and Methods, 5, 1409–1424.

    Article  Google Scholar 

  37. Minciardi, M. R., Spada, C. D., Rossi, G. L., Angius, R., Orrù, G., Mancini, L., et al. (2009). Metodo per la valutazione e la classificazione dei corsi d’acqua utilizzando la comunità delle Macrofite acquatiche. Rapporto Tecnico ENEA RT/2009/23/ENEA, Roma.

  38. Minciardi, M. R., Spada C. D., Abati S., Ciadamidaro, S., & Fiorenza, A. (2014). Protocollo di campionamento e analisi delle macrofite dei corsi d’acqua guadabili, in: ISPRA. Metodi biologici per le acque superficiali interne. Manuali e linee guida, 111/2014.

  39. Newman, J. R., Dawson, F. H., Holmes, N. T. H., Chadd, S., Rouen, K. J., & Sharp, L. (1997). Mean trophic rank: a user’s manual. Bristol: Environment Agency of England & Wales.

    Google Scholar 

  40. Petts, G. E. (1984). Impounded rivers: perspectives for ecological management. Chichester: Wiley.

    Google Scholar 

  41. Poff, N. L., & Hart, D. D. (2002). How dams vary and why it matters for the emerging science of dam removal. BioScience, 52, 659–668.

    Article  Google Scholar 

  42. Poff, N. L., & Zimmerman, J. K. H. (2010). Ecological responses to altered flow regimes: a literature review to inform environmental flows science and management. Freshwater Biology, 55(1), 194–205.

    Article  Google Scholar 

  43. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, et al. (1997). The natural flow regime. BioScience, 47, 769–784.

    Article  Google Scholar 

  44. R Core Team. (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  45. Rehn, A. C. (2009). Benthic macroinvertebrates as indicators of biological condition below hydropower dams on west slope Sierra Nevada streams, California, USA. River Research and Applications, 25, 208–228.

    Article  Google Scholar 

  46. Riis, T., & Biggs, B. J. F. (2003). Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography, 48, 1488–1497.

    Article  Google Scholar 

  47. Riis, T., Suren, A. M., Clausen, B., & Sand-Jensen, K. (2008). Vegetation and flow regime in lowland streams. Freshwater Biology, 53, 1531–1543.

    Article  Google Scholar 

  48. Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25, 257–265.

    Article  Google Scholar 

  49. Rørslett, B., Mjelde, M., & Johansen, S. W. (1989). Effects of hydropower development on aquatic macrophytes in Norwegian rivers: present state of knowledge and some case studies. Regulated Rivers: Research and Management, 3, 19–28.

    Article  Google Scholar 

  50. Schank, J. C., & Koehnle, T. J. (2009). Pseudoreplication is a pseudoproblem. Journal of Comparative Psychology, 123, 421–433.

    Article  Google Scholar 

  51. Schaumburg, J., Schranz, C., Foerster, J., Gutowski, A., Hofmann, G., Meilinger, et al. (2004). Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica, 34, 283–301.

    Article  Google Scholar 

  52. Schneider, S., Krumpholz, T., & Melzer, A. (2000). Trophieindikation in Fließgewässern mit Hilfe des TIM (Trophie-Index Makrophyten) – Erprobung eines neu entwickelten Index im Inninger Bach. Acta Hydrochimica et Hydrobiologica, 28, 241–249.

    CAS  Article  Google Scholar 

  53. Sculthorpe, C. D. (1966). The biology of aquatic vascular plants. London: Edward Arnold Ltd.

    Google Scholar 

  54. Slack, N. G., & Glime, J. M. (1985). Niche relationships of mountain stream bryophytes. The Bryologist, 88, 7–18.

    Article  Google Scholar 

  55. Suren, A. M., & Duncan, M. J. (1999). Rolling stones and mosses: effect of substrate stability on bryophyte communities in streams. Journal of the North American Benthological Society, 18, 457–467.

    Article  Google Scholar 

  56. Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19, 397–441.

    Article  Google Scholar 

  57. Tombolini, I., Caneva, G., Cancellieri, L., Abati, S., & Ceschin, S. (2014). Damming effects on riparian and aquatic vegetation: the Nazzano case study (Tiber River, central Italy). Knowledge and Management of Aquatic Ecosystems. doi:10.1051/kmae/2013085.

    Google Scholar 

  58. Vanderpoorten, A., & Klein, P. J. (2000). Aquatic bryophyte assemblages along a gradient of regulation in the river Rhine. Hydrobiologia, 410, 11–16.

    Article  Google Scholar 

  59. Vieira, C., Séneca, A., Sérgio, C., & Ferreira, M. T. (2012). Bryophyte taxonomic and functional groups as indicators of fine scale ecological gradients in mountain streams. Ecological Indicators, 18, 98–107.

    Article  Google Scholar 

  60. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

    Article  Google Scholar 

  61. Wehr, J. D., & Sheath, R. G. (Eds.). (2003). Freshwater algae of north america: ecology and classification. Boston: Academic.

    Google Scholar 

  62. Wiegleb, G. (1984). A study of habitat conditions of the macrophytic vegetation in selected river systems in western Lower Saxony (Federal Republic of Germany). Aquatic Botany, 18, 313–352.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Concita Daniela Spada and Dr. Valeria Ginepri for their help in the field and laboratory work and to Dr. Gian Luigi Rossi for his comments improving the research design.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silverio Abati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 5

(PDF 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abati, S., Minciardi, M.R., Ciadamidaro, S. et al. Response of macrophyte communities to flow regulation in mountain streams. Environ Monit Assess 188, 414 (2016). https://doi.org/10.1007/s10661-016-5420-2

Download citation

Keywords

  • River flow regulation
  • Alpine streams
  • Aquatic plant
  • Bioassessment
  • Bryophytes
  • Dam impact