Skip to main content

Advertisement

Log in

Comparison modeling for alpine vegetation distribution in an arid area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120.

    Article  Google Scholar 

  • Burai, P., Deak, B., Valko, O., & Tomor, T. (2015). Classification of herbaceous vegetation using airborne hyperspectral imagery. Remote Sensing, 7(2), 2046–2066.

    Article  Google Scholar 

  • Cawsey, E., Austin, M., & Baker, B. L. (2002). Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling. Biodiversity and Conservation, 11(12), 2239–2274.

    Article  Google Scholar 

  • Chen, G., Peng, M., Huang, R., & Lu, X. (1994). Vegetation characteristics and its distribution of Qilian mountain region. Acta Botanica Sinica, 36, 63–72 (in Chinese).

    Google Scholar 

  • Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S., et al. (2014). Integrated study of the water–ecosystem–economy in the Heihe River Basin. National Science Review, 1(3), 413–428.

    Article  Google Scholar 

  • Clevers, J. (1986) The application of a vegetation index in correcting the infrared reflectance for soil background. In Remote sensing for resources development and environmental management. International symposium. 7, (pp. 221–226)

  • Cohen, W. B., & Goward, S. N. (2004). Landsat’s role in ecological applications of remote sensing. Bioscience, 54(6), 535–545. doi:10.1641/0006-3568(2004)054[0535:lrieao]2.0.co;2.

    Article  Google Scholar 

  • Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., Milian, V. E. G., et al. (2015). Remote sensing for mapping natural habitats and their conservation status—new opportunities and challenges. International Journal of Applied Earth Observation and Geoinformation, 37, 7–16. doi:10.1016/j.jag.2014.11.005.

    Article  Google Scholar 

  • Corcoran, J. M., Knight, J. F., & Gallant, A. L. (2013). Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota. Remote Sensing, 5(7), 3212–3238. doi:10.3390/rs5073212.

    Article  Google Scholar 

  • Crist, E. P., Laurin, R., & Cicone, R. C. (1986) Vegetation and soils information contained in transformed Thematic Mapper data. In Proceedings of IGARSS’86 Symposium, (pp. 1465–1470): European Space Agency Publications Division Paris

  • Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., & Hess, K. T. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. doi:10.1890/07-0539.1.

    Article  Google Scholar 

  • Dirnbock, T., Dullinger, S., Gottfried, M., Ginzler, C., & Grabherr, G. (2003). Mapping alpine vegetation based on image analysis, topographic variables and canonical correspondence analysis. Applied Vegetation Science, 6(1), 85–96. doi:10.1658/1402-2001(2003)006[0085:mavboi]2.0.co;2.

    Google Scholar 

  • Dobrowski, S. Z., Safford, H. D., Cheng, Y. B., & Ustin, S. L. (2008). Mapping mountain vegetation using species distribution modeling, image‐based texture analysis, and object‐based classification. Applied Vegetation Science, 11(4), 499–508.

    Article  Google Scholar 

  • Domaç, A., & Süzen, M. (2006). Integration of environmental variables with satellite images in regional scale vegetation classification. International Journal of Remote Sensing, 27(7), 1329–1350.

    Article  Google Scholar 

  • Editorial Committee of Vegetation Map of China, the Chinese Academy of Sciences. (2007). the Vegetation Map of the People’s Republic of China (1:1 000 000), Geological Publishing House.

  • ESRI, Redlands, CA, USA. (2010). ArcGIS v.10.0.

  • Exelis VIS, Boulder, CO, USA. (2013). ENVI v.5.1.

  • Faber-Langendoen, D., Keeler-Wolf, T., Meidinger, D., Tart, D., Hoagland, B., Josse, C., et al. (2014). EcoVeg: a new approach to vegetation description and classification. Ecological Monographs, 84(4), 533–561. doi:10.1890/13-2334.1.

    Article  Google Scholar 

  • Feng, Q., Su, Y., Hou, H., Zhang, Y., & Gao, H. (2014). Dataset of investigation of eco-hydrology transect in Heihe river basin. Heihe Plan Science Data Center. doi:10.3972/heihe.041.2014.db.

    Google Scholar 

  • Frank, T. D. (1988). Mapping dominant vegetation communities in the Colorado rocky-mountain front range with Landsat thematic mapper and digital terrain data. Photogrammetric Engineering and Remote Sensing, 54(12), 1727–1734.

    Google Scholar 

  • Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19(4), 474–499. doi:10.1177/030913339501900403.

    Article  Google Scholar 

  • Franklin, J. (2010). Mapping species distributions: spatial inference and prediction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., & Savenije, H. H. G. (2014). Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China. Hydrology and Earth System Sciences, 18(5), 1895–1915. doi:10.5194/hess-18-1895-2014.

    Article  Google Scholar 

  • Gao, T., Zhu, J. J., Zheng, X., Shang, G. D., Huang, L. Y., & Wu, S. R. (2015). Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI Imagery and multi-scale textures using random forests. Remote Sensing, 7(2), 1702–1720.

    Article  Google Scholar 

  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. doi:10.1016/j.patrec.2005.08.011.

    Article  Google Scholar 

  • Gong, J., Xie, Y., Jia, Z., & Qian, D. (2014). Recent progress in land use and cover change in Heihe River Basin. Journal of Lanzhou University (Natural Sciences), 50(3), 390–397. in Chinese.

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. doi:10.1016/S0304-3800(00)00354-9.

    Article  Google Scholar 

  • Han, T. (2002). Study on classification between coniferous forest and shrubbery based on TM data in the part of Qilian mountainous area. Remote Sensing Technology and Application, 17, 317–321 (in Chinese).

    Google Scholar 

  • Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74. doi:10.1016/j.rse.2011.08.024.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., & Tibshirani, R. (2009). The elements of statistical learning (Vol. 2, Vol. 1): Springer.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. doi:10.1002/joc.1276.

    Article  Google Scholar 

  • Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

    Article  Google Scholar 

  • Johansen, B., Karlsen, S., & Tømmervik, H. (2012). Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Record, 48, 47–63.

    Article  Google Scholar 

  • Kaufman, Y., & Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30, 261–270.

    Article  Google Scholar 

  • Landis, J., & Koch, G. (1977). The measurement of observed agreement for categorical data. Biometrics, 33, 159–174.

    Article  CAS  Google Scholar 

  • Landmann, T., Piiroinen, R., Makori, D. M., Abdel-Rahman, E. M., Makau, S., Pellikka, P., et al. (2015). Application of hyperspectral remote sensing for flower mapping in African savannas. Remote Sensing of Environment, 166, 50–60. doi:10.1016/j.rse.2015.06.006.

    Article  Google Scholar 

  • Loveland, T. R., & Dwyer, J. L. (2012). Landsat: building a strong future. [Article]. Remote Sensing of Environment, 122, 22–29. doi:10.1016/j.rse.2011.09.022.

    Article  Google Scholar 

  • Mark, A. F., Dickinson, K. J. M., & Hofstede, R. G. M. (2000). Alpine vegetation, plant distribution, life forms, and environments in a perhumid New Zealand region: oceanic and tropical high mountain affinities. Arctic Antarctic and Alpine Research, 32(3), 240–254. doi:10.2307/1552522.

    Article  Google Scholar 

  • Marsett, R. C., Qi, J., Heilman, P., Biedenbender, S. H., Watson, M. C., Amer, S., et al. (2006). Remote sensing for grassland management in the arid southwest. Rangeland Ecology & Management, 59(5), 530–540. doi:10.2111/05-201r.1.

    Article  Google Scholar 

  • Newell, C. L., & Leathwick, J. R. (2005). Mapping Hurunui forest community distribution, using computer models. Wellington: Department of Conservation.

    Google Scholar 

  • Ohmann, J. L., Gregory, M. J., & Roberts, H. M. (2014). Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sensing of Environment, 151, 3–15.

    Article  Google Scholar 

  • Oke, O. A., & Thompson, K. A. (2015). Distribution models for mountain plant species: the value of elevation. Ecological Modelling, 301, 72–77.

    Article  Google Scholar 

  • Ouyang, Z., Zhang, L., Wu, B., Li, X., Xu, W., Xiao, Y., et al. (2015). An ecosystem classification system based on remote sensor information in China. Acta Ecologica Sinica, 35(2), 219–226 (in Chinese).

    Google Scholar 

  • Pearson, R. & Miller, L. (1972).Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. Proceedings of the 8th International Symposium on Remote Sensing of the Environment II: 1355–1379.

  • Price, K. P., Guo, X., & Stiles, J. M. (2002). Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas. International Journal of Remote Sensing, 23(23), 5031–5042.

    Article  Google Scholar 

  • Qin, J., Ding, Y. J., Wu, J. K., Gao, M. J., Yi, S. H., Zhao, C. C., et al. (2013). Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China. Journal of Arid Land, 5(3), 366–383. doi:10.1007/s40333-013-0162-2.

    Article  Google Scholar 

  • Richards, J. A., & Richards, J. (1999). Remote sensing digital image analysis (Vol. 3): Springer.

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. Greenbelt: NASA/GSFCT Type III Final Report.

    Google Scholar 

  • Schmidt, K., & Skidmore, A. (2003). Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment, 85(1), 92–108.

    Article  Google Scholar 

  • Schowengerdt, R. A. (2006). Remote sensing: models and methods for image processing. USA: Academic press.

    Google Scholar 

  • Sesnie, S. E., Gessler, P. E., Finegan, B., & Thessler, S. (2008). Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment, 112(5), 2145–2159. doi:10.1016/j.rse.2007.08.025.

    Article  Google Scholar 

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161–185.

    Article  Google Scholar 

  • Sluiter, R. (2005). Mediterranean land cover change: modelling and monitoring natural vegetation using GIS and remote sensing. Utrecht: Utrecht University.

    Google Scholar 

  • van Beijma, S., Comber, A., & Lamb, A. (2014). Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149, 118–129. doi:10.1016/j.rse.2014.04.010.

    Article  Google Scholar 

  • van der Linden, S., Rabe, A., Held, M., Jakimow, B., Leitão, P., Okujeni, A., et al. (2015). The EnMAP-Box—a toolbox and application programming interface for EnMAP data processing. Remote Sensing, 7(9), 11249.

    Article  Google Scholar 

  • van der Maarel, E., & Franklin, J. (2013). Vegetation ecology. Oxford: Wiley-Blackwell.

    Book  Google Scholar 

  • van Deventer, A. P., Ward, A. D., Gowda, P. H., & Lyon, J. G. (1997). Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric Engineering and Remote Sensing, 63, 87–93.

    Google Scholar 

  • Wang, G. H., Zhou, G. S., Yang, L. M., & Li, Z. Q. (2003). Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 165(2), 169–181. doi:10.1023/a:1022236115186.

    Article  Google Scholar 

  • Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23.

    Article  Google Scholar 

  • Zhang, Z., De Clercq, E., Ou, X., De Wulf, R., & Verbeke, L. (2008). Mapping dominant vegetation communities at Meili Snow Mountain, Yunnan Province, China using satellite imagery and plant community data. Geocarto International, 23(2), 135–153.

    Article  Google Scholar 

  • Zhang, Z., van Coillie, F., Ou, X., & de Wulf, R. (2014). Integration of satellite imagery, topography and human disturbance factors based on canonical correspondence analysis ordination for mountain vegetation mapping: a case study in Yunnan, China. Remote Sensing, 6(2), 1026–1056.

    Article  Google Scholar 

  • Zhao, C. Y., Nan, Z. R., & Cheng, G. D. (2005). Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China. Ecological Modelling, 189(1–2), 209–220. doi:10.1016/j.ecolmodel.2005.03.016.

    Google Scholar 

  • Zhao, C., Nan, Z., Cheng, G., Zhang, J., & Feng, Z. (2006). GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters. Ecological Modelling, 191(3–4), 487–500. doi:10.1016/j.ecolmodel.2005.05.018.

    Article  Google Scholar 

  • Zimmermann, N. E., & Kienast, F. (1999). Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10(4), 469–482. doi:10.2307/3237182.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China [91225302].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanrun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Lai, L., Guan, T. et al. Comparison modeling for alpine vegetation distribution in an arid area. Environ Monit Assess 188, 408 (2016). https://doi.org/10.1007/s10661-016-5417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5417-x

Keywords

Navigation