Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic

  • Aisha S. DickersonEmail author
  • Mohammad H. Rahbar
  • Amanda V. Bakian
  • Deborah A. Bilder
  • Rebecca A. Harrington
  • Sydney Pettygrove
  • Russell S. Kirby
  • Maureen S. Durkin
  • Inkyu Han
  • Lemuel A. MoyéIII
  • Deborah A. Pearson
  • Martha Slay Wingate
  • Walter M. Zahorodny


Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention’s Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m3) and arsenic concentrations below the 75th percentile (≤0.13 ng/m3) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence.


Metals Autism spectrum disorder Environment Pollution Air quality 



We acknowledge the assistance of the National Center of Birth Defects and Developmental Disabilities of the CDC, especially the guidance provided by Jon Baio and Lin Hui Tian. We also acknowledge the support and resources provided by the Biostatistics/Epidemiology/Research Design (BERD) component of the Center for Clinical and Translational Sciences (CCTS) for this project. CCTS is mainly funded by the NIH Centers for Translational Science Award (NIH CTSA) grant (UL1 RR024148), and its renewal (UL1 TR000371) awarded to the University of Texas Health Science Center at Houston by the National Center for Research Resources (NCRR) and the National Center for Advancing Translational Sciences (NCATS), awarded to University of Texas Health Science Center at Houston. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCRR, NCATS, or the CDC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10661_2016_5405_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)


  1. Adams, J. B., Audhya, T., McDonough-Means, S., Rubin, R. A., Quig, D., Geis, E., et al. (2013). Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biological Trace Element Research, 151(2), 171–180. doi: 10.1007/s12011-012-9551-1.CrossRefGoogle Scholar
  2. Adams, J. B., Holloway, C. E., George, F., & Quig, D. (2006). Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biological Trace Element Research, 110(3), 193–209. doi: 10.1385/BTER:110:3:193.CrossRefGoogle Scholar
  3. Adams, J. B., Romdalvik, J., Ramanujam, V. M., & Legator, M. S. (2007). Mercury, lead, and zinc in baby teeth of children with autism versus controls. Journal of Toxicology and Environmental Health A, 70(12), 1046–1051. doi: 10.1080/15287390601172080.CrossRefGoogle Scholar
  4. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, fourth edition text revision (DSM-IV-TR). Washington: American Psychiatric Publishing, Inc.CrossRefGoogle Scholar
  5. Aschner, M., & Aschner, J. L. (1990). Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neuroscience and Biobehavioral Reviews, 14(2), 169–176.CrossRefGoogle Scholar
  6. ATSDR. (2007). Toxicological profile for arsenic. Retrieved from Agency for Toxic Substances and Disease Registry (ATSDR)
  7. Becerra, T. A., Wilhelm, M., Olsen, J., Cockburn, M., & Ritz, B. (2013). Ambient air pollution and autism in Los Angeles county, California. Environmental health perspectives, 121(3), 380–386. doi: 10.1289/ehp.1205827.CrossRefGoogle Scholar
  8. Bellinger, D. C. (2008). Lead neurotoxicity and socioeconomic status: conceptual and analytical issues. Neurotoxicology, 29(5), 828–832. doi: 10.1016/j.neuro.2008.04.005.CrossRefGoogle Scholar
  9. Bhasin, T. K., & Schendel, D. (2007). Sociodemographic risk factors for autism in a US metropolitan area. Journal of Autism and Developmental Disorders, 37(4), 667–677. doi: 10.1007/s10803-006-0194-y.CrossRefGoogle Scholar
  10. Blake, J., Hoyme, H. E., & Crotwell, P. L. (2013). A brief history of autism, the autism/vaccine hypothesis and a review of the genetic basis of autism spectrum disorders. South Dakota Journal of Medicine, Spec no, 58-65.Google Scholar
  11. Blanchard, K. S., Palmer, R. F., & Stein, Z. (2011). The value of ecologic studies: mercury concentration in ambient air and the risk of autism. Reviews on Environmental Health, 26(2), 111–118.CrossRefGoogle Scholar
  12. Blaurock-Busch, E., Amin, O. R., Dessoki, H. H., & Rabah, T. (2012). Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica (Buchar.), 7(1), 38–48.Google Scholar
  13. Block, M. L., & Calderon-Garciduenas, L. (2009). Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32(9), 506–516. doi: 10.1016/j.tins.2009.05.009.CrossRefGoogle Scholar
  14. Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. A., Jones, J. R., & Lu, M. C. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011-2012 (65). Centers for Disease Control and Prevention (CDC). Retrieved from:
  15. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchichal linear models: applications and data analysis methods. Newbury Park: Sage Publication.Google Scholar
  16. Butler, B., Likens, G., Cohen, M., & Vermeylen, F. (2007). Mercury in the environment and patterns of mercury deposition from the NADP/MDN mercury deposition network National Oceanic and Atmospheric Administration. Retrieved from:
  17. Calderon-Garciduenas, L., Macias-Parra, M., Hoffmann, H. J., Valencia-Salazar, G., Henriquez-Roldan, C., Osnaya, N., et al. (2009). Immunotoxicity and environment: immunodysregulation and systemic inflammation in children. Toxicologic Pathology, 37(2), 161–169. doi: 10.1177/0192623308329340.CrossRefGoogle Scholar
  18. California Department of Developmental Services. (2003). Autistic spectrum disorders—changes in the California caseload, an update: 1999 Through 2002 California Health and Human Services Agency. Retrieved from:
  19. Canfield, R. L., Henderson, C. R., Jr., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. New England Journal of Medicine, 348(16), 1517–1526. doi: 10.1056/NEJMoa022848.CrossRefGoogle Scholar
  20. Croen, L. A., Grether, J. K., Hoogstrate, J., & Selvin, S. (2002). The changing prevalence of autism in California. Journal of Autism and Developmental Disorders, 32(3), 207–215.CrossRefGoogle Scholar
  21. DeSoto, M. C., & Hitlan, R. T. (2007). Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. Journal of Child Neurology, 22(11), 1308–1311.CrossRefGoogle Scholar
  22. DeSoto, M. C. (2009). Ockham’s Razor and autism: the case for developmental neurotoxins contributing to a disease of neurodevelopment. NeuroToxicology, 30, 331–337.CrossRefGoogle Scholar
  23. Diez Roux, A. V. (2004). The study of group-level factors in epidemiology: rethinking variables, study designs, and analytical approaches. Epidemiologic Reviews, 26, 104–111. doi: 10.1093/epirev/mxh006.CrossRefGoogle Scholar
  24. Durkin, M. S., Maenner, M. J., Meaney, F. J., Levy, S. E., DiGuiseppi, C., Nicholas, J. S., et al. (2010). Socioeconomic inequality in the prevalence of autism spectrum disorder: evidence from a U.S. cross-sectional study. PLoS One, 5(7), e11551. doi: 10.1371/journal.pone.0011551.CrossRefGoogle Scholar
  25. Enstrom, A., Krakowiak, P., Onore, C., Pessah, I. N., Hertz-Picciotto, I., Hansen, R. L., et al. (2009). Increased IgG4 levels in children with autism disorder. Brain, Behavior, and Immunity, 23(3), 389–395. doi: 10.1016/j.bbi.2008.12.005.CrossRefGoogle Scholar
  26. Environmental Protection Agency. (2015). National trends in lead levels. Retrieved from Environmental Protection Agency
  27. Evans, G. W., & Kantrowitz, E. (2002). Socioeconomic status and health: the potential role of environmental risk exposure. Annual Review of Public Health, 23, 303–331. doi: 10.1146/annurev.publhealth.23.112001.112349.CrossRefGoogle Scholar
  28. Fido, A., & Al-Saad, S. (2005). Toxic trace elements in the hair of children with autism. Autism, 9(3), 290–298.CrossRefGoogle Scholar
  29. Ha, M., Kwon, H. J., Lim, M. H., Jee, Y. K., Hong, Y. C., Leem, J. H., et al. (2009). Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: a report of the children’s health and environment research (CHEER). Neurotoxicology, 30(1), 31–36. doi: 10.1016/j.neuro.2008.11.011.CrossRefGoogle Scholar
  30. Herbert, M. R., Russo, J. P., Yang, S., Roohi, J., Blaxill, M., Kahler, S. G., et al. (2006). Autism and environmental genomics. Neurotoxicology, 27(5), 671–684. doi: 10.1016/j.neuro.2006.03.017.CrossRefGoogle Scholar
  31. Hertz-Picciotto, I., Green, P. G., Delwiche, L., Hansen, R., Walker, C., & Pessah, I. N. (2010). Blood mercury concentrations in CHARGE Study children with and without autism. Environmental Health Perspectives, 118(1), 161–166. doi: 10.1289/ehp.0900736.Google Scholar
  32. Holmes, A. S., Blaxill, M. F., & Haley, B. E. (2003). Reduced levels of mercury in first baby haircuts of autistic children. International Journal of Toxicology, 22(4), 277–285.CrossRefGoogle Scholar
  33. Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  34. Kalkbrenner, A. E., Daniels, J. L., Chen, J. C., Poole, C., Emch, M., & Morrissey, J. (2010). Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology, 21(5), 631–641. doi: 10.1097/EDE.0b013e3181e65d76.CrossRefGoogle Scholar
  35. Kern, J. K., Grannemann, B. D., Trivedi, M. H., & Adams, J. B. (2007). Sulfhydryl-reactive metals in autism. Journal of Toxicology and Environmental Health, Part A, 70(8), 715–721.CrossRefGoogle Scholar
  36. LaSalle, J. M. (2013). Epigenomic strategies at the interface of genetic and environmental risk factors for autism. Journal of Human Genetics, 58(7), 396–401. doi: 10.1038/jhg.2013.49.CrossRefGoogle Scholar
  37. Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207(1-2), 111–116. doi: 10.1016/j.jneuroim.2008.12.002.CrossRefGoogle Scholar
  38. Mazumdar, S., Winter, A., Liu, K. Y., & Bearman, P. (2013). Spatial clusters of autism births and diagnoses point to contextual drivers of increased prevalence. Social Science & Medicine, 95, 87–96. doi: 10.1016/j.socscimed.2012.11.032.CrossRefGoogle Scholar
  39. Ming, X., Brimacombe, M., Malek, J. H., Jani, N., & Wagner, G. C. (2008). Autism spectrum disorders and identified toxic land fills: co-occurrence across States. Environmental Health Insights, 2, 55–59.Google Scholar
  40. Obrenovich, M. E., Shamberger, R. J., & Lonsdale, D. (2011). Altered heavy metals and transketolase found in autistic spectrum disorder. Biological Trace Element Research, 144(475), 486. doi: 10.1007/s12011-011-9146-2.Google Scholar
  41. Ozkaynak, H., Palma, T., Touma, J. S., & Thurman, J. (2008). Modeling population exposures to outdoor sources of hazardous air pollutants. Journal of Exposure Science & Environmental Epidemiology, 18(1), 45–58. doi: 10.1038/sj.jes.7500612.CrossRefGoogle Scholar
  42. Palmer, R. F., Blanchard, S., Stein, Z., Mandell, D., & Miller, C. (2006). Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health & Place, 12(2), 203–209. doi: 10.1016/j.healthplace.2004.11.005.CrossRefGoogle Scholar
  43. Palmer, R. F., Blanchard, S., & Wood, R. (2009). Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health & Place, 15(1), 18–24. doi: 10.1016/j.healthplace.2008.02.001.CrossRefGoogle Scholar
  44. Payne-Sturges, D. C., Burke, T. A., Breysse, P., Diener-West, M., & Buckley, T. J. (2004). Personal exposure meets risk assessment: a comparison of measured and modeled exposures and risks in an urban community. Environmental Health Perspectives, 112(5), 589–598.CrossRefGoogle Scholar
  45. Pinborough-Zimmerman, J., Bilder, D., Bakian, A., Satterfield, R., Carbone, P. S., Nangle, B. E., et al. (2011). Sociodemographic risk factors associated with autism spectrum disorders and intellectual disability. Autism Research, 4(6), 438–448. doi: 10.1002/aur.224.CrossRefGoogle Scholar
  46. Rahbar, M. H., Samms-Vaughan, M., Ardjomand-Hessabi, M., Loveland, K. A., Dickerson, A. S., Chen, Z., et al. (2012). The role of drinking water sources, consumption of vegetables and seafood in relation to blood arsenic concentrations of Jamaican children with and without Autism Spectrum Disorders. Science of the Total Environment, 433, 362–370. doi: 10.1016/j.scitotenv.2012.06.085.CrossRefGoogle Scholar
  47. Rahbar, M. H., Samms-Vaughan, M., Loveland, K. A., Ardjomand-Hessabi, M., Chen, Z., Bressler, J., et al. (2013). Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotoxicity Research, 23(1), 22–38. doi: 10.1007/s12640-012-9321-z.CrossRefGoogle Scholar
  48. Rai, D., Lewis, G., Lundberg, M., Araya, R., Svensson, A., Dalman, C., et al. (2012). Parental socioeconomic status and risk of offspring autism spectrum disorders in a Swedish population-based study. Journal of the American Academy of Child and Adolescent Psychiatry, 51(5), 467–476. doi: 10.1016/j.jaac.2012.02.012.CrossRefGoogle Scholar
  49. Rasmussen, P. E., Levesque, C., Chenier, M., Gardner, H. D., Jones-Otazo, H., & Petrovic, S. (2013). Canadian House Dust Study: population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Science of the Total Environment, 443, 520–529. doi: 10.1016/j.scitotenv.2012.11.003.CrossRefGoogle Scholar
  50. Rice, C. E., Baio, J., Van Naarden, B. K., Doernberg, N., Meaney, F. J., & Kirby, R. S. (2007). A public health collaboration for the surveillance of autism spectrum disorders. Paediatric and Perinatal Epidemiology, 21(2), 179–190. doi: 10.1111/j.1365-3016.2007.00801.x.CrossRefGoogle Scholar
  51. Roberts, A. L., Lyall, K., Hart, J. E., Laden, F., Just, A. C., Bobb, J. F., et al. (2013). Perinatal air pollutant exposures and autism spectrum disorder in the children of nurses’ health study II participants. Environmental Health Perspectives, 121(8), 978–984. doi: 10.1289/ehp.1206187.Google Scholar
  52. Roberts, E. M., English, P. B., Grether, J. K., Windham, G. C., Somberg, L., & Wolff, C. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environmental Health Perspectives, 115(10), 1482–1489. doi: 10.1289/ehp.10168.Google Scholar
  53. Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic effects and biomarkers of lead exposure: a review. Reviews on Environmental Health, 24(1), 15–45CrossRefGoogle Scholar
  54. SAS Institute, Inc. (2011) SAS ® Version 9.3. Cary, NC, US. SAS Institute Inc.Google Scholar
  55. Shelton, J. F., Hertz-Picciotto, I., & Pessah, I. N. (2012). Tipping the balance of autism risk: potential mechanisms linking pesticides and autism. Environmental Health Perspectives, 120(7), 944–951. doi: 10.1289/ehp.1104553.CrossRefGoogle Scholar
  56. Szklo, M., & Nieto, J. (2007). Epidemiology: beyond the basics (2nd ed.). Mississauga: Jones and Barlett.Google Scholar
  57. Thomas, P., Zahorodny, W., Peng, B., Kim, S., Jani, N., Halperin, W., et al. (2012). The association of autism diagnosis with socioeconomic status. Autism, 16(2), 201–213.CrossRefGoogle Scholar
  58. Tian, Y., Green, P. G., Stamova, B., Hertz-Picciotto, I., Pessah, I. N., Hansen, R., et al. (2011). Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls. Neurotoxicity Research, 19(1), 1–13. doi: 10.1007/s12640-009-9126-x.CrossRefGoogle Scholar
  59. USEPA. (2002). Implementation guidance for the arsenic rule—drinking water regulations for arsenic and clarifications to compliance and new source contaminants monitoring. Retrieved from U.S. Environmental Protection Agency
  60. USEPA. (2010). The ASPEN Model. Retrieved from
  61. Van Meter, K. C., Christiansen, L. E., Delwiche, L. D., Azari, R., Carpenter, T. E., & Hertz-Picciotto, I. (2010). Geographic distribution of autism in California: a retrospective birth cohort analysis. Autism Research, 3(1), 19–29. doi: 10.1002/aur.110.Google Scholar
  62. Van Naarden, B. K., Pettygrove, S., Daniels, J., Miller, L., Nicholas, J., Baio, J., et al. (2007). Evaluation of a methodology for a collaborative multiple source surveillance network for autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2002. MMWR Surveillance Summaries, 56(1), 29–40.Google Scholar
  63. Volk, H. E., Hertz-Picciotto, I., Delwiche, L., Lurmann, F., & McConnell, R. (2011). Residential proximity to freeways and autism in the CHARGE study. Environmental Health Perspectives, 119(6), 873–877. doi: 10.1289/ehp.1002835.CrossRefGoogle Scholar
  64. Volk, H. E., Kerin, T., Lurmann, F., Hertz-Picciotto, I., McConnell, R., & Campbell, D. B. (2014). Autism spectrum disorder: interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology, 25(1), 44–47. doi: 10.1097/EDE.0000000000000030.CrossRefGoogle Scholar
  65. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environmental Health Perspectives, 114(9), 1438–1444.CrossRefGoogle Scholar
  66. Zablotsky, B., Black, L. A., Maenner, M. J., Schieve, L., & Blumberg, S. J. (2015). Estimated Prevalence of Autism ad Other Developmental Disabilities Following Questionnaire Changes in the 2014 National Health Interview Survey (87). Centers for Disease Control and Prevention. Retrieved from:
  67. Zheng, W., Aschner, M., & Ghersi-Egea, J. F. (2003). Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicology and Applied Pharmacology, 192(1), 1–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aisha S. Dickerson
    • 1
    Email author
  • Mohammad H. Rahbar
    • 1
    • 2
    • 3
  • Amanda V. Bakian
    • 4
  • Deborah A. Bilder
    • 4
  • Rebecca A. Harrington
    • 5
  • Sydney Pettygrove
    • 6
  • Russell S. Kirby
    • 7
  • Maureen S. Durkin
    • 8
  • Inkyu Han
    • 3
  • Lemuel A. MoyéIII
    • 9
  • Deborah A. Pearson
    • 10
  • Martha Slay Wingate
    • 11
  • Walter M. Zahorodny
    • 12
  1. 1.Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS)University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Division of Clinical and Translational Sciences, Department of Internal MedicineMcGovern Medical School The University of Texas Health Science Center at HoustonHoustonUSA
  3. 3.Division of Epidemiology, Human Genetics, and Environmental Sciences (EHGES)University of Texas School of Public Health at Houston, University of Texas Health Science Center at HoustonHoustonUSA
  4. 4.Division of Child Psychiatry, Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUSA
  5. 5.Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  6. 6.Mel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonUSA
  7. 7.Department of Community and Family HealthCollege of Public Health, University of South FloridaTampaUSA
  8. 8.Waisman CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  9. 9.Division of BiostatisticsUniversity of Texas School of Public Health at HoustonHoustonUSA
  10. 10.Department of Psychiatry and Behavioral SciencesUniversity of Texas Medical SchoolHoustonUSA
  11. 11.Department of Health Care Organization and PolicySchool of Public Health, University of Alabama at BirminghamBirminghamUSA
  12. 12.Department of PediatricsRutgers New Jersey Medical SchoolNewarkUSA

Personalised recommendations