Skip to main content
Log in

A comparative study of metal contamination in soil using the borehole method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abanuz, G. Y. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99, 82–92.

    Article  Google Scholar 

  • Acosta, J. A., Faz, A., Martínez, S., & Arocena, J. M. (2011). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Applied Geochemistry, 26(3), 405–414.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A., & Shawabkeh, R. A. (2006). Metals distribution in soils around the cement factory in southern Jordan. Environmental Pollution, 140(3), 387–394.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. London: Blackie Academic and Professional.

    Book  Google Scholar 

  • ASRIS (Australian Soil Resource Information System). (2009). http://www.asris.csiro.au/index_other.html. Accessed 7 Aug 2014.

  • Ayeni, O. (2013). Risk assessment of raw effluent discharge from an industrial estate n Lagos, Southwestern Nigeria. Greener Journal of Environmental Management and Public Safety, 2(5), 189–194.

    Google Scholar 

  • Bech, J., Poschenrieder, C., & Llugany, M. (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203(1), 83–91.

    Article  CAS  Google Scholar 

  • Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. Science of the Total Environment, 166(1–3), 429–439.

    Google Scholar 

  • BOE. (1990). Royal decree which regulates the use of sewage sludge in agriculture. BOE No. 262 de 1 de noviembre de 1990, Madrid, Spain. (pp. 32339–32340).

  • Borgna, L., Di Lella, L. A., & Nannoni, F. (2009). The high contents of lead in soils of Northern Kosovo. Journal of Geochemical Exploration, 101(2), 137–146.

    Article  CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2010). Elements of the nature and properties of soils. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Bushra, R., Naushad, M., Adnan, R., Shahadat, M., Ansari, M., & Ahmed, A. (2015). Electrical and optical properties of synthesized composite material polyaniline-Ti (IV) arsenophosphate. Asian Journal of Chemistry, 27, 1121.

    Article  CAS  Google Scholar 

  • Cappuyns, V., Van Herreweghe, S., Swennen, R., Ottenburgs, R., & Deckers, J. (2002). Arsenic pollution at the industrial site of Reppel-Bocholt (North Belgium). Science of the Total Environment, 295(1–3), 217–240.

    Article  CAS  Google Scholar 

  • CCME (Canada Council of Ministers of the Environment). (2010). Canada Environmental Quality Guidelines Summary Table. http://st-ts.ccme.ca. Accessed 19 Oct 2011.

  • CEPA (Chinese Environmental Protection Administration). (1995). Environmental quality standard for soils (GB 15618–1995) (in Chinese).

  • Chen, H. M., Zheng, C. R., Tu, C., & Zhu, Y. G. (1999). Heavy metal pollution in soils in China: status and countermeasures. Ambio, 28, 211–218.

    CAS  Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 6(4), 542–551.

    Article  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Science of the Total Environment, 373(2–3), 488–500.

    Article  CAS  Google Scholar 

  • Davies, B. E. (1997). Heavy metal contaminated soils in an old industrial area of Wales, Great Britain: source identification through statistical data interpretation. Water, Air, & Soil Pollution, 94(1–2), 85–98.

    CAS  Google Scholar 

  • DEC (Department of Environment and Conservation). (2010). Contaminated sites management series: assessment levels for soil, sediment and water. Version 4, revision 1. http://www.dec.wa.gov.au/contaminatedsites. Accessed 7 Aug 2014.

  • Deepali, K. K., & Gangwar, K. (2010). Metals concentration in textile and tannery effluents, associated soils and groundwater. New York Science Journal, 3(4), 82–89.

    Google Scholar 

  • Deeply, J. M., & Ferguson, J. E. (1994). Heavy metal and organic matter concentration and distributions in dated sediments of a small estuary adjacent to a small urban area. The Science of Total Environment, 153, 97–111.

    Article  Google Scholar 

  • ECD (European Community Directive). (1986). Protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Journal European Commission, 181, 6–12.

    Google Scholar 

  • Fakayode, S. O., & Onianwa, P. C. (2002). Heavy metal contamination of soil and bioaccumulation in Guinea grass (Panicum maximum) around Ikeja Industrial Estate, Lagos, Nigeria. Environmental Geology, 43(1–2), 145–150.

    CAS  Google Scholar 

  • Geological Survey of Malaysia, Geology of Penang Island. (1980). Annual report of geological survey of Malaysia. (pp. 178–184).

  • Govil, P. K., Sorlie, J. E., & Murthy, N. N. (2008). Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environmental Monitoring and Assessment, 140(1–3), 313–323.

    Article  CAS  Google Scholar 

  • Gowd, S. S., Reddy, M. R., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    Article  CAS  Google Scholar 

  • Ibrahim, R., Awang, A. R., Malek, H., Shafie, I., Osman, A., & Tahar, S. (1985). Report on toxic and hazardous waste survey in Malaysia. Dept. of Environment, Malaysia. (pp. 50).

  • Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city, Italy. Environmental Pollution, 124(2), 247–256.

    Article  CAS  Google Scholar 

  • Iqbal, J., & Shah, M. H. (2011). Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. Journal of Hazardous Materials, 192, 887–898.

    Article  CAS  Google Scholar 

  • Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Incheon Au-Ag mine, Korea. Applied Geochemistry, 16(11), 1369–1375.

    Article  CAS  Google Scholar 

  • Kabata, P., & Pendias, H. (2001). Trace element in soils and plants. London: CRC Press.

    Google Scholar 

  • Kabir, E., Ray, S., Kim, K. H., Yoon, H. O., Jeon, E. C., Kim, Y. S., Cho, Y. S., Yun, S. T., & Brown, R. J. C. (2012). Current status of trace metal pollution in soils affected by industrial activities. Scientific World Journal, 2012, 1–18.

    Article  Google Scholar 

  • Kashem, A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, & Soil Pollution, 115(1–4), 347–361.

    Article  CAS  Google Scholar 

  • Kisku, G. C., Barman, S. C., & Bhrgaya, S. K. (2000). Contamination of soils and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, & Soil Pollution, 120(1–2), 121–137.

    Article  CAS  Google Scholar 

  • Kloke, A. (1979). Content of arsenic, cadmium, chromium, fluoride, lead, mercury, nickel in plants grown on contaminated soil. Paper presented at United Nations ECE Slump, on effect of airborn pollution on vegetation, Warsaw.

  • Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area. Mumbai, Western India. Environmental Geology, 47(8), 1054–1061.

    Article  CAS  Google Scholar 

  • Lee, C. H. (2003). Assessment of contamination load on water, soil and sediment affected by the Kongjujeil mine drainage, Republic of Korea. Environment Geology, 44(5), 501–515.

    Article  CAS  Google Scholar 

  • Lee, D. Y., & Lee, C. H. (2011). Regulatory standards of heavy metal pollutants in soil and groundwater in Taiwan. Department of Agricultural Chemistry, National Taiwan University. http://sgw.epa.gov.tw/resag/Update_Data/Information8839253Nov30_01Regulatory%20Standards%20of%20Heavy%20Metal%20Pollutants%20in%20Soil_20111116.pdf. Accessed 7 Aug 2014.

  • Li, X., & Feng, L. (2012). Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmospheric Environment, 47, 58–65.

    Article  Google Scholar 

  • Li, X., & Huang, C. (2006). Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, China. Environmental Pollution, 140(3), 387–394.

    Article  Google Scholar 

  • Li, X., & Huang, C. (2007). Environment impact o heavy metals on urban soil in the vicinity of industrial area of Baoji city, P. R. China. Environmental Geology, 52(8), 1631–1637.

    Article  CAS  Google Scholar 

  • Louekari, K., & Salminen, S. (1986). Intake of heavy metals from foods in Finland, West Germany and Japan. Food Additives and Contaminants, 3(4), 355–362.

    Article  CAS  Google Scholar 

  • Luo, X. S., Yu, S., Zhu, Y. G., & Li, X. D. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment, 421–422, 17–30.

    Article  Google Scholar 

  • Maas, S., Scheifler, R., & Benslama, M. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution, 158(6), 2294–2301.

    Article  CAS  Google Scholar 

  • Martley, E., Gulson, B. L., & Pfeifer, H. R. (2004). Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. Science of the Total Environment, 325(1–3), 113–127.

    Article  CAS  Google Scholar 

  • Medici, L., Bellanova, J., & Belviso, C. (2011). Trace metals speciation in sediments of the Basento River (Italy). Applied Clay Science, 53(3), 414–442.

    Article  CAS  Google Scholar 

  • MEJ (Ministry of the Environment Japan). (2003). Soil contamination countermeasures, 2003. http://www.env.go.jp/en/water/soil/contami_cm.pdf . Accessed 7 Aug 2014.

  • MOSTI (Ministry of Science, Technology and Innovation). (2014). Official Portal Malaysian Meteorological Department. http://www.met.gov.my/index.php?option=com_content&task=view&id=75&Itemid=1089. Accessed 21 May 2014.

  • Müller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. Geological Journal, 2, 108–118.

    Google Scholar 

  • Nabi, S. A., Shahadat, M., Bushra, R., Shalla, A. H., & Ahmed, F. (2010). Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes. Chemical Engineering Journal, 165(2), 405–412.

    Article  CAS  Google Scholar 

  • Nabi, S. A., Raeissi, A. S., Shahadat, M., Bushra, R., & Khan, A. M. (2012a). Synthesis and characterization of novel cation exchange adsorbent for the treatment of real samples for metal ions. Chemical Engineering Journal, 200, 426–432.

    Article  Google Scholar 

  • Nabi, S. A., Bushra, R., & Shahadat, M. (2012b). Application of Zr (IV) tungstate for removal of metal ions from aqueous solutions. Toxicological & Environmental Chemistry, 94(3), 468–481.

    Article  CAS  Google Scholar 

  • Nabulo, G., Young, S. D., & Black, C. R. (2010). Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. The Science of Total Environment, 408, 5338–5351.

    Article  CAS  Google Scholar 

  • Nadal, M., Mari, M., Schuhmacher, M., & Domingo, J. L. (2007). Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/ petrochemical area: temporal trend. Chemosphere, 66(2), 267–276.

    Article  CAS  Google Scholar 

  • Nadal, M., Mari, M., Schuhmacher, M., & Domingo, J. L. (2009). Multi-compartmental environmental surveillance of a petrochemical area: levels of micropollutants. Environment International, 35(2), 227–235.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyma, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • O’Laughlin, J. (2005). Policies for risk assessment in federal land an resource management decision. Forest Ecology and Management, 211, 15–27.

    Article  Google Scholar 

  • Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Ajmone-Marsan, F. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco, Italy. Environmental Pollution, 157(2), 680–689.

    Article  CAS  Google Scholar 

  • Radojevic, M., & Bashlin, V. N. (1999). Practical environmental analysis. UK: The Royal Society of Chemistry.

    Google Scholar 

  • Rahman, N. N. N. A., Shahadat, M., Won, C. A., & Omar, F. M. (2014). FTIR study and bioadsorption kinetics of bioadsorbent for the analysis of metal pollutants. RSC Advances, 4, 58156–58163.

    Article  Google Scholar 

  • Rahman, N. N. N. A., Shahadat, M., Omar, F. M., Chew, A., & Kadir, M. O. A. (2015). Dry trichoderma biomass: biosorption behavior for the treatment of toxic heavy metal ions. Desalination and Water Treatment, 57, 13106–13112. 1-7.

    Article  Google Scholar 

  • Rodríguez, S., Querol, X., & Alastuey, A. (2004). Comparative p M10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of the Total Environment, 328(1–3), 95–113.

    Article  Google Scholar 

  • Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17.

    Article  Google Scholar 

  • Schalscha, E., & Ahumada, I. (1998). Heavy metals in rivers and soils of centre Chile. Water Science and Technology, 37(8), 251–255.

    Article  Google Scholar 

  • Schulin, R., Curchod, F., Mondeshka, M., Daskalova, A., & Keller, A. (2007). Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremitkovtzi (Bulgaria). Geoderma, 140(1–2), 52–61.

    Article  CAS  Google Scholar 

  • Shahadat, M., Teng, T. T., Rafatullah, M., & Arshad, M. (2015). Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloid Surface B, 126, 121–137.

    Article  CAS  Google Scholar 

  • Shallari, S., Schwartz, C., Hasko, A., & Morel, J. L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 209(2–3), 133–142.

    Article  CAS  Google Scholar 

  • Slavkovic, L., Skrbic, B., Miljevic, N., & Antonije, O. (2004). Principal component analysis of trace elements in industrial soils. Environmental Chemistry Letters, 2, 105–108.

    Article  CAS  Google Scholar 

  • Smichowski, P., Marrero, J., & Gómez, D. (2005). Inductively coupled plasma optical emission spectrometric determination of trace element in PM10 airborne particulate matter collected in an industrial area of Argentina. Microchemical Journal, 80(1), 9–17.

    Article  CAS  Google Scholar 

  • Soriano, A., Pallarés, S., Pardo, F., Vicente, A. B., Sanfeliu, T., & Bech, J. (2010). Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. Journal of Geochemical Exploration, 113, 36–44.

    Article  Google Scholar 

  • Srinivisa Gowd, S., Ramakrishna Reddy, M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174(1–3), 113–121.

    Article  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627.

    Article  CAS  Google Scholar 

  • Takahoglu, S., & Kartal, S. (2006). Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmospheric Environment, 40(16), 2797–2805.

    Article  Google Scholar 

  • Teh, T., Rahman, N. N. N. A., Shahadat, M., Wong, Y., & Omar, A. K. M. (2016). Risk assessment of metal contamination in soil and groundwater in Asia: a review of recent trends as well as existing environmental laws and regulation. Pedosphere, 26(4), 431–450.

    Article  Google Scholar 

  • The Ministry of Housing, Spatial Planning and Environment. The New Dutch List. Directorate-General for Environmental Protection Department of Soil Protection (625) Rijnstraat 8. http://www.axys.cz/doc/en/Dutchlist.pdf. Accessed 17 Oct 2011.

  • Tippie, V. K. (1984). An environmental characterization of Chesapeake Bay and a frame work for action. In V. Kennedy (Ed.), The estuary as a filter. New York: Academic Press.

    Google Scholar 

  • UK Environment Agency. (2009). Using soil guideline values better regulation. Science programme science report: SC050021/ SGV introduction.

  • UNEP (United Nations Environment Programme). (1992). Environmental aspects of the metal finishing industry, a technical guide.

  • USEPA. (1998). Characterizing risk at metal finishing facilities: meeting the needs of all stakeholders. Office of Research and Development. EPA/600/R-97/111.

  • USEPA. (2014). Mid-Atlantic brownfields and land revitalization. http://www.epa.gov/reg3hwmd/bf-lr/regional/industry/electroplating.htm. Accessed 5 Dec 2014.

  • Vandas, D. F., Costa, C. N., & Brito, M. G. (2008). Risk assessment for redevelopment of contaminated land at an old industrial site. Wseas Transactions on Environment and Development, 2(4), 150–160.

    Google Scholar 

  • Volensky, B. (1990). Removal and recovery of heavy metals by biosorption. Biosorption of heavy metals. Boston: CEC Press.

    Google Scholar 

  • Volgar, G. E., & Lestan, D. (2010). Solidification/ stablisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder. Journal of Hazardous Materials, 178(1–3), 926–933.

    Google Scholar 

  • Vousta, D., Grimanis, A., & Samara, C. (1996). Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environmental Pollution, 94(3), 325–335.

    Article  Google Scholar 

  • WHO (World Health Organization). (2004). The World Health Report 2004. Shaping the future. World Health Organization, 1211 Geneva 27, Switzerland.

  • Wood, A. K. H., Ahmad, Z., Shazili, N. A. M., Yaakob, R., & Carpenter, R. (2004). Metal diagenesis and transport in coastal sediments around Penang island, Malaysia. Journal of Nuclear and Related Techonologies, 1, 1–22.

    Google Scholar 

  • Yukselen, M. A. (2002). Characterization of heavy metal contaminated soils in Northern Cyprus. Environmental Geology, 42(6), 597–603.

    Article  CAS  Google Scholar 

  • Zhao, J. M., Dang, Z., Cai, M. F., & Liu, C. Q. (2007). Soil heavy metal pollution around the Dabaoshan Mine, Guangdong Province, China. Pedosphere, 17, 588–594.

    Article  Google Scholar 

  • Zoller, W. H., Gladney, E. S., & Duce, R. A. (1974). Atmosphere concentrations and sources of trace metals at the South Pole. Science, 183, 199–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nik Norulaini Nik Ab Rahman or Mohammad Shahadat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, T.L., Rahman, N.N.N.A., Shahadat, M. et al. A comparative study of metal contamination in soil using the borehole method. Environ Monit Assess 188, 404 (2016). https://doi.org/10.1007/s10661-016-5394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5394-0

Keywords

Navigation