Skip to main content

17β-Estradiol influent and effluent concentrations in wastewater: demographic influences and the risk to environmental health

Abstract

The concentration of 17β-estradiol (E2) was measured through stages of wastewater treatment at a central Illinois wastewater treatment plant (WWTP). E2 concentration was quantified using a competitive enzyme-linked immunosorbent assay (ELISA). The concentration of E2 was compared with demographic effects of a university; physical parameters of the wastewater (dissolved oxygen, pH, and temperature); and daily influent and effluent flow rates. Effluent concentrations ranged from 0 to 25.3 ng L−1 with an average discharge of 3.6 ng L−1. E2 concentration was shown to increase at the start of each university semester; however, this trend was not observed in the summer sessions. Low influent and effluent flow rates, which correspond to increased water retention time at the WWTP, were correlated to increased removal efficiency of E2, where low flow was linked to 91 % removal efficiency and high flow with 58 % removal efficiency. This study concludes that E2 was being discharged at concentrations known to cause ecological risk, and that the demographic changes in a university student body had a significant effect on E2 concentration throughout the treatment process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Adlercreutz, H. (2002). Phytoestrogens and cancer. Journal of Steroid Biochemistry and Molecular Biology, 83(1–5), 113–118.

    CAS  Article  Google Scholar 

  • ATSDR. (2007). Sunnyside area groundwater contamination. US department of health and human services. Public Health Service: Division of Health Assessment and Consultation. Atlanta, Georgia 30333

  • Braga, O., Smythe, G., Schafer, I., & Feitz, J. (2005). Steroid estrogens in primary and tertiary wastewater treatment plants. Water science and technology : a journal of the international association on water pollution research, 52(8), 273–278.

    CAS  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). NY: Springer Verlag.

    Google Scholar 

  • Caldwell, D. J., Mastrocco, F., Nowak, E., Johnston, J., Yekel, H., Pfeiffer, D., Hoyt, M., DuPlessie, B. M., & Anderson, P. D. (2010). An assessment of potential exposure and risk from estrogens in drinking water. Environmental Health Perspectives, 118(3), 343.

    Google Scholar 

  • Coleman, H. M., Vimonses, V., Leslie, G., & Amal, R. (2007). Removal of contaminants of concern in water using advanced oxidation techniques. Water Science & Technology, 55(12), 301–306.

    CAS  Article  Google Scholar 

  • Combalbert, S., & Hernandez-Raquet, G. (2010). Occurrence, fate, and biodegradation of estrogens in sewage and manure. Applied Microbiology and Biotechnology, 86(6), 1671–1692.

    CAS  Article  Google Scholar 

  • Core Team, R. (2014). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Cripe, G. M., Hemmer, B. L., Goodman, L. R., Fournie, J. W., Raimondo, S., Vennari, J. C., Danner, R. L., Smith, K., Manfredonia, B. R., Kulaw, D. H., & Hemmer, M. J. (2009). Multigenerational exposure of the estuarine Sheepshead Minnow (Cyprinodon variegates) to 17b-estradiol: organism level effects over three generations. Journal of Environmental Toxicology, 28(11), 2397–2408.

    CAS  Google Scholar 

  • D’Haese, I., Kozak, A., Huysmans A., Van Malderen, V., Dhooge, W., Weemases, M. and Verstraete, W. (2000) Pharmaceuticals in the environment: focus on the estrogen 17α-ethinyloestradiol. In: Proceedings of International Seminar on Pharmaceuticals in the Environment. March 9th 2000, Brussels, Tecnological Institute.

  • Dodwell, D., & Vergote, I. (2005). A comparison of fulvestrant and the third-generation aromatase inhibitors in the second-line treatment of postmenopausal women with advanced breast cancer. Cancer Treatment Reviews, 31(4), 274–282.

    CAS  Article  Google Scholar 

  • Farre, M., Kuster, M., Brix, R., Rubio, F., Lopez de Alda, M. J., & Barcelo, D. (2007). Comparative study of estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per trillion analysis of estrogens in water samples. Journal of Chromatography A, 1160, 166–175.

    CAS  Article  Google Scholar 

  • Giannandrea, F., Paoli, D., Figà-Talamanca, I., Lombardo, F., Lenzi, A., & Gandini, L. (2013). Effect of endogenous and exogenous hormones on testicular cancer: the epidemiological evidence. The International Journal of Developmental Biology, 57, 255–263. http://doi.org/10.1387/ijdb.130015fg.

    CAS  Article  Google Scholar 

  • Gunnarsson, L., Kristiansson, E., Förlin, L., Nerman, O., & Larsson, D. G. J. (2007). Sensitive and robust gene expression changes in fish exposed to estrogen—a microarray approach. BMC Genomics, 8, 149.

    Article  Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Howell, A. (2005). New developments in the treatment of postmenopausal breast cancer. Trends in Endocrinology & Metabolism, 16(9), 420–428.

    CAS  Article  Google Scholar 

  • Huang, C. H., & Sedlak, D. L. (2001). Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environmental Toxicology and Chemistry / SETAC, 20(1), 133–139.

    CAS  Article  Google Scholar 

  • Hutchinson, T. H., Ankley, G. T., Segner, H., & Tyler, C. R. (2005). Screening and testing for endocrine disruption in fish—biomarkers as “signposts,” not “traffic lights,” in risk assessment. Environmental Health Perspectives, 114(S-1), 106–114.

    Article  Google Scholar 

  • Jobling, S., Casey, D., Rodgers-Gray, T., Oehlmann, J., Schulte-Oehlmann, U., Pawlowski, S., Baunbeck, T., Turner, A. P., & Tyler, C. R. (2003). Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquatic Toxicology (Amsterdam, Netherlands), 65(2), 205–220.

    CAS  Article  Google Scholar 

  • Jobling, S., Williams, R., Johnson, A., Taylor, A., Gross-Sorokin, M., Nolan, M., Tyler, C. R., van Aerle, R., Santos, E., & Brightly, G. (2005). Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environmental Health Perspectives, 114(S-1), 32–39.

    Article  Google Scholar 

  • Jones-Lepp, T. L., Alvarez, D., Englert, B., & Batt, A. (2009). Pharmaceuticals and hormones in the environment. Encyclopedia of Analytical Chemistry. doi:10.1002/9780470027318.a9059.

  • Kang, N.-H., Hwang, K. A., Lee, H. R., Choi, D. W., & Choi, K.-C. (2013). Resveratrol regulates the cell viability promoted by 17β-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor α and insulin growth factor-1 receptor in BG-1 ovarian cancer cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 59, 373–379. http://doi.org/10.1016/j.fct.2013.06.029.

    CAS  Article  Google Scholar 

  • Kawamura, T., Sakai, S., Omura, S., Hori-e, R., Kawahara, T., Kinoshita, M., & Yamashita, I. (2002). Estrogen inhibits development of yolk veins and causes blood clotting in transgenic medaka fish overexpressing estrogen receptor. Zoological Science, 19(12), 1355–1361.

    CAS  Article  Google Scholar 

  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., & Flick, R. W. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8897–8901.

    CAS  Article  Google Scholar 

  • Liu, J., Burdette, J. E., Xu, H., Gu, C., van Breemen, R. B., Bhat, K. P., Booth, N., Constantinou, A. I., Pezzuto, J. M., Fong, H. H., Farnsworth, N. R., & Bolton, J. L. (2001). Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. Journal of Agricultural and Food Chemistry, 49(5), 2472–2479.

    CAS  Article  Google Scholar 

  • Metcalfe, C., & Metcalfe, T. (2001). Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 20(2), 297–308.

    CAS  Article  Google Scholar 

  • Nash, J. P., Kime, D. E., Van der Ven, L. T. M., Wester, P. W., Brion, F., Maack, G., Stahlschmidt-Allner, P., & Tyler, C. R. (2004). Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environmental Health Perspectives, 112(17), 1725–1733.

    CAS  Article  Google Scholar 

  • Rankouhi, T. R., Sanderson, J. T., Van Holsteijn, I., Van Leeuwen, C., Vethaaka, D., & Van den Berg, M. (2004). Effects of natural and synthetic estrogens and various environmental contaminants on vitellogenesis in fish primary hepatocytes: comparison of bream (Abramis brama) and carp (Cyprinus carpio). Toxicological Sciences : an Official Journal of the Society of Toxicology, 81(1), 90–102.

    CAS  Article  Google Scholar 

  • Razmara, A., Sunday, L., Stirone, C., Wang, X. B., Krause, D. N., Duckles, S. P., & Procaccio, V. (2008). Mitochondrial effects of estrogen are mediated by estrogen receptor in brain endothelial cells. Journal of Pharmacology and Experimental Therapeutics, 325(3), 782–790.

    CAS  Article  Google Scholar 

  • Routledge, E., & Sheahan, D. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science and Technology, 32(11), 1559–1565.

    CAS  Article  Google Scholar 

  • Seki, M., Fujishima, S., Nozaka, T., Maeda, M., & Kobayashi, K. (2006). Comparison of response to 17 beta-estradiol and 17 beta-trenbolone among three small fish species. Environmental Toxicology and Chemistry / SETAC, 25(10), 2742–2752.

    CAS  Article  Google Scholar 

  • Shappell, N. W. (2006). Estrogenic activity in the environment: municipal wastewater effluent, river, ponds, and wetlands. Journal of Environmental Quality, 35(1), 122–132.

    CAS  Article  Google Scholar 

  • Singh, B., Bhat, T. K., & Singh, B. (2003). Potential therapeutic applications of some antinutritional plant secondary metabolites. Journal of Agricultural and Food Chemistry, 51(19), 5579–5597.

    CAS  Article  Google Scholar 

  • Suter, G., II. (2006). Ecological risk assessment (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Thorpe, K. (2000). Development of an in vivo screening assay for estrogenic chemicals using juvenile rainbow trout (Oncorhynchus mykiss). Environmental Science and Technology, 19(11), 2812–2820.

    CAS  Google Scholar 

  • Thorpe, K., & Hutchinson, T. (2001). Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Science and Technology, 35(12), 2476–2481.

    CAS  Article  Google Scholar 

  • Tong, R. M., Beck, M. B., & Latten, A. (1980). Fuzzy control of the activated sludge wastewater treatment process. Automatica, 16(6), 695–701.

    Article  Google Scholar 

  • USEPA. (2009). Development of estimated quantitation levels for the second six-year review of national primary drinking water regulations (56pp, 674K) October 2009 EPA 815-B-09-005.

  • USEPA. (2014). Contaminant candidate list (CCL3). EPA-HQ-OW-2007-1189 at Regulations.gov.

  • Velu, M., & Ramanathan, V. (2011). Impact of 17β estradiol on catfish, Heteropneustes fossilis (Bloch.). Recent Research in Science & Technology, 3(7), 63–68.

    CAS  Google Scholar 

  • Weber, S., Leuschner, P., Kmpfer, P., Dott, W., & Hollender, J. (2005). Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed cluture. Applied Microbiology and Biotechnology, 67(1), 106–112.

    CAS  Article  Google Scholar 

  • WHO. (2011). Pharmaceuticals in drinking water. World health organization, WHO/HSE/WSH/11.05.

  • Wise, A., O’Brien, K., & Woodruff, T. (2011). Are oral contraceptives a significant contributor to the estrogenicity of drinking water? Environmental Science and Technology, 45(1), 51–60.

    CAS  Article  Google Scholar 

  • Woods, M., & Kumar, A. (2011). Vitellogenin induction by 17β-estradiol and 17α-ethynylestradiol in male Murray rainbowfish (Melanotaenia fluviatilis). Environmental Toxicology and Chemistry / SETAC, 30(11), 2620–2627.

    CAS  Article  Google Scholar 

  • Wright-Walters M., Volz C, Assessment E. (2007). Municipal wastewater concentrations of pharmaceutical and xeno-estrogens: wildlife and human health implications. Proceedings of the 2007 national conference on environmental science and technology, (1), 1–9.

  • Wu, C., Xue, W., Zhou, H., Huang, X., & Wen, X. (2011). Removal of endocrine disrupting chemicals in a large scale membrane bioreactor plant combined with anaerobic-anoxic-oxic process for municipal wastewater reclamation. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 64(7), 1511–1518.

    CAS  Article  Google Scholar 

  • Yoon Y., Westerhoff P. (2004). Removal of 17Î2 estradiol and fluoranthene by nanofiltration and ultrafiltration. Journal of environmental toxicology, (December), 1460–1468.

  • Young, W.F., Whitehouse, P., Johnson, I. and Sorokin, N. (2004). Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. Environmental Agency Technical Report P2-T04/1 WRc-NSF Report No.: EA5098. Bristol, UK.

Download references

Acknowledgments

We would like to thank the staff, students, and faculty of Eastern Illinois University as well as the Charleston, IL Wastewater Treatment Plant staff for their professional support. We would also like to thank the Charleston, IL Wastewater Treatment Plant and Eastern Illinois University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Gaines.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heffron, K.T., Gaines, K.F., Novak, J.M. et al. 17β-Estradiol influent and effluent concentrations in wastewater: demographic influences and the risk to environmental health. Environ Monit Assess 188, 288 (2016). https://doi.org/10.1007/s10661-016-5292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5292-5

Keywords

  • 17β-estradiol
  • Environmental health
  • Wastewater treatment
  • Water quality