Skip to main content
Log in

Preparation of functionalized graphene oxide and its application as a nanoadsorbent for Hg2+ removal from aqueous solution

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A poly(allyl acetoacetate)-grafted graphene oxide (GO-GAA) was successfully synthesized using Hummer’s method by divinyl sulfone modification and allyl acetoacetate polymerizaton. This novel functionalized graphene oxide was characterized thoroughly by FTIR, XRD, FE-SEM, TEM, and TG-DT analyses. GO-GAA was then employed as an adsorbent for Hg2+ removal from aqueous solutions. It exhibited higher adsorption capacity with regard to the pristine graphene oxide because of its effective functionalities, especially the dicarbonyl groups which are significant chelating agents. The effects of pH, temperature, and contact time on Hg2+ adsorption were also investigated. The optimum Hg2+ adsorption was obtained at pH 4 and T = 20–30 °C. The adsorption isotherm and kinetics were found to follow the Langmuir and pseudo-second-order models, respectively, with a correlation coefficient of 0.99 for both. The calculated maximum adsorption capacity of the adsorbent was 282.7 mg Hg2+ per unit mass of GO-GAA, which is much more than 56 mg/g of that obtained for GO. The results showed that adsorption reaches up to 95 % of its maximum in less than 2 min. The synthesized GO-GAA as a novel and efficient adsorbent has been regenerated by HNO3 and reused. It retained its performance for Hg2+ removal for several times and a less than 5 % decrease in removal efficiency was observed after four cycles of adsorption–desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad Panahi, H., Feizbakhsh, A., Fard, R. A., & Moniri, E. (2013). Quantitative analysis and sorption of cadmium in environmental samples with a functionalized synthetic polymer. Toxicological and Environmental Chemistry, 95(8), 1279–1289.

    Article  CAS  Google Scholar 

  • Azamat, J., Khataee, A., & Joo, S. W. (2014). Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: a molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 53, 112–117.

    Article  CAS  Google Scholar 

  • Bao, J., Fu, Y., & Bao, Z. (2013). Thiol-functionalized magnetite/graphene oxide hybrid as a reusable adsorbent for Hg2+ removal. Nanoscale Research Letters, 8(1), 1–6.

    Article  Google Scholar 

  • Bayen, S. P., & Chowdhury, P. (2015). Synthesis of chromatographic material by immobilization of thioacetamide onto silica gel for easy detection and removal of mercury. Journal of Environmental Chemical Engineering, 3(1), 70–78.

    Article  CAS  Google Scholar 

  • Cui, L., Guo, X., Wei, Q., Wang, Y., Gao, L., Yan, L., Yan, T., & Du, B. (2015). Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. Journal of Colloid and Interface Science, 439, 112–120.

    Article  CAS  Google Scholar 

  • Dawodu, F., Akpomie, G., & Ogbu, I. (2012). Isotherm modeling on the equilibrium sorption of cadmium(II) from solution by Agbani clay. International Journal of Multidisciplinary Sciences and Engineering, 3(9), 9–14.

    Google Scholar 

  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240.

    Article  CAS  Google Scholar 

  • Frendlich, H. (1906). Concerning adsorption in solutions. Journal of Physical Chemistry, 57, 385.

    Google Scholar 

  • García-Valdez, O., Ledezma-Rodríguez, R., Saldívar-Guerra, E., Yate, L., Moya, S., & Ziolo, R. F. (2014). Graphene oxide modification with graft polymers via nitroxide mediated radical polymerization. Polymer, 55(10), 2347–2355.

    Article  Google Scholar 

  • Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R., & Kim, K. S. (2012). Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 112(11), 6156–6214.

    Article  CAS  Google Scholar 

  • Gupta, V., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 81–90.

    Article  CAS  Google Scholar 

  • Gupta, V., Srivastava, S., Mohan, D., & Sharma, S. (1997). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 17(8), 517–522.

    Article  CAS  Google Scholar 

  • Gupta, V., Singh, P., & Rahman, N. (2004). Adsorption behavior of Hg(II), Pb(II), and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin. Journal of Colloid and Interface Science, 275(2), 398–402.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185(1), 17–23.

    Article  CAS  Google Scholar 

  • Heidari, A., Younesi, H., Rashidi, A., & Ghoreyshi, A. A. (2014). Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chemical Engineering Journal, 254, 503–513.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & Ofomaja, A. E. (2006). Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochemical Engineering Journal, 30(2), 117–123.

    Article  CAS  Google Scholar 

  • Ismaiel, A. A., Aroua, M. K., & Yusoff, R. (2013). Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chemical Engineering Journal, 225, 306–314.

    Article  Google Scholar 

  • Jahangiri, M., Shahtaheri, S. J., Adl, J., Rashidi, A., Kakooei, H., Rahimi Forushani, A., Ganjali, M. R., & Ghorbanali, A. (2011). The adsorption of benzene, toluene and xylenes (BTX) on the carbon nanostructures: the study of different parameters. Fresenius Environmental Bulletin, 20(4a), 1036–1045.

    CAS  Google Scholar 

  • Kabiri, S., Tran, D. N., Azari, S., & Losic, D. (2015). Graphene–diatom silica aerogels for efficient removal of mercury ions from water. ACS Applied Materials & Interfaces, 7, 11815–11823.

    Article  CAS  Google Scholar 

  • Kango, S., & Kumar, R. (2016). Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms. Environmental Monitoring and Assessment, 188(1), 1–14.

    Article  CAS  Google Scholar 

  • Khodabakhshi, S., & Karami, B. (2014). Graphene oxide nanosheets as metal-free catalysts in the three-component reactions based on aryl glyoxals to generate novel pyranocoumarins. New Journal of Chemistry, 38(8), 3586–3590. doi:10.1039/C4NJ00228H.

    Article  CAS  Google Scholar 

  • Khodabakhshi, S., Marahel, F., Rashidi, A., & Abbasabadi, M. K. (2015). A green synthesis of substituted coumarins using nano graphene oxide as recyclable catalyst. Journal of the Chinese Chemical Society, 62(5), 389–392.

    Article  CAS  Google Scholar 

  • Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458(7240), 872–876.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhou, H., Huang, Z., Wang, W., Zeng, F., & Kuang, Y. (2013). Graphene covalently functionalized with poly(p-phenylenediamine) as high performance electrode material for supercapacitors. Journal of Materials Chemistry A, 1(10), 3454–3462.

    Article  CAS  Google Scholar 

  • Parham, H., Zargar, B., & Shiralipour, R. (2012). Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. Journal of Hazardous Materials, 205–206, 94–100.

    Article  Google Scholar 

  • Parlayıcı, Ş., & Pehlivan, E. (2015). Natural biosorbents (garlic stem and horse chestnut shell) for removal of chromium(VI) from aqueous solutions. Environmental Monitoring and Assessment, 187(12), 1–10.

    Google Scholar 

  • Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., & Jia, Z. (2003). Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 376(1–2), 154–158.

    Article  CAS  Google Scholar 

  • Pourmand, S., Abdouss, M., & Rashidi, A. (2015). Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent. Journal of Industrial and Engineering Chemistry, 22, 8–18.

    Article  CAS  Google Scholar 

  • Rao, M. M., Reddy, D. K., Venkateswarlu, P., & Seshaiah, K. (2009). Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. Journal of Environmental Management, 90(1), 634–643.

    Article  CAS  Google Scholar 

  • Rashidi, A. M., Kazemi, D., Izadi, N., Pourkhalil, M., Jorsaraei, A., Ganji, E., & Lotfi, R. (2016). Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean Journal of Chemical Engineering, 33, 606–622.

    Article  Google Scholar 

  • Saleh, T. A., & Gupta, V. K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environmental Science and Pollution Research, 19(4), 1224–1228.

    Article  CAS  Google Scholar 

  • Seresht, R. J., Jahanshahi, M., Rashidi, A., & Ghoreyshi, A. A. (2013). Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Applied Surface Science, 276, 672–681.

    Article  Google Scholar 

  • Shahriary, L., & Athawale, A. A. (2014). Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2, 58–63.

    Google Scholar 

  • Shirkhanloo, H., Khaligh, A., Mousavi, H. Z., & Rashidi, A. (2015). Graphene oxide-packed micro-column solid-phase extraction combined with flame atomic absorption spectrometry for determination of lead(II) and nickel(II) in water samples. International Journal of Environmental Analytical Chemistry, 95(1), 16–32.

    Article  CAS  Google Scholar 

  • Singh, S. K., Singh, M. K., Kulkarni, P. P., Sonkar, V. K., Grácio, J. J., & Dash, D. (2012). Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 6(3), 2731–2740.

    Article  CAS  Google Scholar 

  • Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B., & Wrzalik, R. (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions, 42(16), 5682–5689.

    Article  CAS  Google Scholar 

  • Stankovich, S., Piner, R. D., Chen, X., Wu, N., Nguyen, S. T., & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16(2), 155–158.

    Article  CAS  Google Scholar 

  • Thakur, S., Das, G., Raul, P. K., & Karak, N. (2013). Green one-step approach to prepare sulfur/reduced graphene oxide nanohybrid for effective mercury ions removal. The Journal of Physical Chemistry C, 117(15), 7636–7642.

    Article  CAS  Google Scholar 

  • Tung, T. T., Kim, T. Y., Shim, J. P., Yang, W. S., Kim, H., & Suh, K. S. (2011). Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Organic Electronics, 12(12), 2215–2224.

    Article  CAS  Google Scholar 

  • Tuzen, M., Sari, A., Mendil, D., & Soylak, M. (2009a). Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. Journal of Hazardous Materials, 169(1), 263–270.

    Article  CAS  Google Scholar 

  • Tuzen, M., Uluozlu, O. D., Karaman, I., & Soylak, M. (2009b). Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2. Journal of Hazardous Materials, 169(1), 345–350.

    Article  CAS  Google Scholar 

  • Wang, J., Deng, B., Chen, H., Wang, X., & Zheng, J. (2009). Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms. Environmental Science & Technology, 43(14), 5223–5228.

    Article  CAS  Google Scholar 

  • Wang, C., Tao, S., Wei, W., Meng, C., Liu, F., & Han, M. (2010). Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. Journal of Materials Chemistry, 20(22), 4635–4641.

    Article  CAS  Google Scholar 

  • Wang, Q., Chang, X., Li, D., Hu, Z., Li, R., & He, Q. (2011). Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite. Journal of Hazardous Materials, 186(2), 1076–1081.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaledeh Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghdam, K., Panahi, H.A., Alaei, E. et al. Preparation of functionalized graphene oxide and its application as a nanoadsorbent for Hg2+ removal from aqueous solution. Environ Monit Assess 188, 223 (2016). https://doi.org/10.1007/s10661-016-5226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5226-2

Keywords

Navigation