Advertisement

Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn

  • Gerald J. ZaguryEmail author
  • Jhony A. Rincon Bello
  • Mert Guney
Article

Abstract

The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals’ mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg−1, assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 103 mg kg−1 (TS) to 238 mg kg−1 (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg−1) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results.

Keywords

Metals Oral bioaccessibility Metal mobility Sequential extractions Soil contamination Soil valorization 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by the MITACS-Accélération program and Northex Environnement Inc. The authors also thank Marie Josée Lamothe and Kathleen Dubé for their input and support to this project; and Manon Leduc, Audrey Laprade, and Lucie Jean for their assistance in the laboratory. Finally, the authors would like to thank the anonymous reviewers for their valuable comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Angelova, V. R., Ivanova, R. V., Todorov, J. M., & Ivanov, K. I. (2010). Lead, cadmium, zinc, and copper bioavailability in the soil-plant-animal system in a polluted area. Scientific World Journal, 10, 273–285.CrossRefGoogle Scholar
  2. ASTM International. (2013). Standard test method for pH of soils–method D4972-13. West Conshohocken: ASTM International.Google Scholar
  3. ATSDR (2005a) Toxicological profile for zinc. Toxic substances portal. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=302&tid=54. Accessed 9 October 2014.
  4. ATSDR (2005b) Toxicological profile for nickel. Toxic substances portal. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=245&tid=44. Accessed: 9 October 2014.
  5. ATSDR (2007) Toxicological profile for lead. ATSDR toxic substances portal. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=96&tid=22. Accessed 9 October 2014.
  6. ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Toxicological profile for copper. Toxic substances portal. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=206&tid=37. Accessed 9 October 2014.
  7. Balasoiu, C. F., Zagury, G. J., & Deschênes, L. (2001). Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. The Science of the Total Environment, 280, 239–255.CrossRefGoogle Scholar
  8. BNQ (Bureau de Normalisation du Québec). (2001). Amenagement paysager à l’aide de végétaux. QC, Canada: Sainte-Foy.Google Scholar
  9. Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 531, 522–531.CrossRefGoogle Scholar
  10. Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60, 365–371.CrossRefGoogle Scholar
  11. CEAEQ (2014) Détermination des métaux : méthode par spectrométrie de masse à source ionisante au plasma d’argon. Quebec, QC, Canada.Google Scholar
  12. Chapman, H. D. (1965). Methods of soil analysis. Madison: American Society of Agronomy Inc.Google Scholar
  13. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.Google Scholar
  14. Cooperband, L. (2002). Building soil organic matter with organic amendments. Madison: Center for Integrated Agricultural Systems.Google Scholar
  15. CPVQ (Conseil des Productions Végétales du Québec) (1997) Méthodes d’analyse des sols, des fumiers et des tissus végétaux. Quebec, QC, Canada.Google Scholar
  16. CEAEQ (Centre d’Expertise en Analyse Environnementale du Québec) (2013) Recherche des salmonelles : méthode présence/absence. Quebec, QC, Canada.Google Scholar
  17. Evans, L. J. (1989). Chemistry of metal retention. Environmental Science and Technology, 23, 1046–1056.CrossRefGoogle Scholar
  18. Farrell, M., & Jones, D. L. (2010). Use of composts in the remediation of heavy metal contaminated soil. Journal of Hazardous Materials, 175, 575–582.CrossRefGoogle Scholar
  19. Farrell, M., Perkins, W. T., Hobbs, P. J., Griffith, G. W., & Jones, D. L. (2010). Migration of heavy metals in soil as influenced by compost amendments. Environmental Pollution, 158, 55–64.CrossRefGoogle Scholar
  20. Girouard, E., & Zagury, G. J. (2009). Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. The Science of the Total Environment, 407, 2576–2585.CrossRefGoogle Scholar
  21. Ho, M. D., & Evans, G. J. (1997). Operational speciation of cadmium, copper, lead and zinc in the NIST Standard Reference Materials 2710 and 2711 (Montana Soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Analytical Communications, 34, 363–364.CrossRefGoogle Scholar
  22. Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations <10 μg/dL in US children and adolescents. Public Health Reports, 115, 521–529.CrossRefGoogle Scholar
  23. Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal Environment Science Health Part A, 42, 1241–1250.CrossRefGoogle Scholar
  24. Madejón, E., de Mora, A. P., Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environmental Pollution, 139, 40–52.CrossRefGoogle Scholar
  25. McLean JE, Bledsoe BE (1992) Behavior of metals in soils. United States Environmental Protection Agency. Washington, DC.Google Scholar
  26. MDDEP (Ministère du Développement Durable, de l' Environnement et des Parcs) (1998) Politique de protection des sols et de réhabilitation des terrains contaminés–Annexe 2 : Les critères génériques pour les sols et pour les eaux souterraines. http://www.mddelcc.gouv.qc.ca/sol/terrains/politique/annexe_2.htm. Accessed 9 October 2014.
  27. MDDEP (2012) Guide sur le recyclage des matières résiduelles fertilisantes. Quebec, QC, Canada.Google Scholar
  28. Miller, G., Begonia, G., Begonia, M., & Ntoni, J. (2008). Bioavailability and uptake of lead by coffeeweed (Sesbania exaltata Raf.). International Journal Environmental Research Public Health, 5, 436–440.CrossRefGoogle Scholar
  29. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193–207.CrossRefGoogle Scholar
  30. Pérez-de-Mora, A., Burgos, P., Cabrera, F., & Madejón, E. (2007). “In situ” amendments and revegetation reduce trace element leaching in a contaminated soil. Water, Air, and Soil Pollution, 185, 209–222.CrossRefGoogle Scholar
  31. Pollmann, O., Meyer, S., Blumenstein, O., & Rensburg, L. (2010). Mine tailings: waste or valuable resource? Waste and Biomass Valorization, 1, 451–459.CrossRefGoogle Scholar
  32. Pouschat, P., & Zagury, G. J. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environmental Science and Technology, 40, 4317–4323.CrossRefGoogle Scholar
  33. Pouschat, P., & Zagury, G. J. (2008). Bioaccessibility of chromium and copper in soils near CCA-treated wood poles. Practice Period Hazardous, Toxic, Radioact Waste Management, 12, 216–223.CrossRefGoogle Scholar
  34. Recyc-Quebec (2013) Bilan de la Gestion des Matières Résiduelles au Québec 2010–2011. Québec, QC, Canada.Google Scholar
  35. Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.CrossRefGoogle Scholar
  36. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.CrossRefGoogle Scholar
  37. Schwab, P., Zhu, D., & Banks, M. K. (2007). Heavy metal leaching from mine tailings as affected by organic amendments. Bioresource Technology, 98, 2935–2941.CrossRefGoogle Scholar
  38. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  39. USEPA (2004) Lead and compounds (inorganic) (CASRN 7439-92-1). IRIS Database. http://www.epa.gov/iris/subst/0277.htm. Accessed 9 October 2014.Google Scholar
  40. USEPA (2008) Child-specific exposure factors handbook–EPA/600/R-06/096F. Washington, DC, USAGoogle Scholar
  41. USEPA (2011) Exposure factors handbook: 2011 Edition–EPA/600/R-090/052/F. Washington, DC, USAGoogle Scholar
  42. USEPA (2012) Standard operating procedure for an in vitro bioaccessibility assay for lead in Soil–EPA 9200.2-86. Washington, DC, USAGoogle Scholar
  43. USEPA (United States Environmental Protection Agency) (2000) Short sheet: TRW recommendations for sampling and analysis of soil at lead (Pb) sites–EPA#540-F-00-010. Washington, DC, USAGoogle Scholar
  44. Van Engelen JGM, Park MVDZ, Janssen PJCM, Oomen AG, Brandon EFA, Bouma K, et al. (2006) Chemicals in toys–a general methodology for assessment of chemical safety of toys with a focus on elements–RIVM/SIR Revised Advisory Report 0010278A02. Bilthoven, the Netherlands.Google Scholar
  45. Van Herwijnen, R., Hutchings, T. R., Al-Tabbaa, A., Moffat, A. J., Johns, M. L., & Ouki, S. K. (2007). Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150, 347–354.CrossRefGoogle Scholar
  46. Zagury, G. J., Dartiguenave, Y., & Setier, J.-C. (1999). Ex situ electroreclamation of heavy metals contaminated sludge: pilot scale study. Journal of Environmental Engineering, 125, 972–978.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gerald J. Zagury
    • 1
    Email author
  • Jhony A. Rincon Bello
    • 1
    • 2
  • Mert Guney
    • 1
  1. 1.Department of Civil, Geological and Mining EngineeringÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Northex Environnement Inc.ContrecoeurCanada

Personalised recommendations