Advertisement

Multipesticide residue levels in UHT and raw milk samples by GC-μECD after QuEChER extraction method

  • Sana Jawaid
  • Farah N. TalpurEmail author
  • Shafi M. Nizamani
  • Abid A. Khaskheli
  • H. I. Afridi
Article

Abstract

In the present study, milk samples including raw and ultra-high temperature (UHT) processed milk were analyzed for pesticide residue levels, including five pesticides, viz chloripyrifos, endosulfan (α and β), profenofos and bifenthrin by gas chromatography microelectron capture detector (GC-μECD) after extraction by QuEChERS method. Further confirmation of the pesticide residue was done by GC-MS. The pesticide residual level in raw and UHT milk samples (n = 70) was determined in the range of 0.1–30 μg L−1. All UHT processed milk samples contain pesticide residues within permissible limit set by the World Health Organization (WHO); however, among raw milk samples, chloripyrifos (12 %), α (24 %), and β (14 %) endosulfan were found above the maximum residue limit (MRL). The estimated daily intake (EDI) of these four pesticide residues were also calculated as 1.32, 16.16, 5.30, 10.20, and 9.93 μg kg−1 body weight for chloripyrifos, endosulfan α, profenofos, endosulfan β, and bifenthrin, respectively. It is concluded that the raw milk samples showed higher prevalence of pesticide residues as compared to UHT processed milk.

Graphical abstract

Determination of pesticide residues in dairy milk by GC-μECD after QuEChERS extraction method

Keywords

QuEChERS Endosulfan Bifenthrin Chloropyrifos Profenofos Milk GC μECD 

References

  1. Arias Estevez, M., Lopez Periago, E., Martinez Carballo, E., Simal Gandara, J., Juan Carlos, M., & Garcia Rio, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260. doi: 10.1016/j.agee.2007.07.011.CrossRefGoogle Scholar
  2. Aslam, M., Rais, S., & Alam, M. (2013). Quantification of organochlorine pesticide residues in the buffalo milk samples of Delhi City, India. Journal of Environmental Protection, 4(9), 964–974. doi: 10.4236/jep.2013.49111.CrossRefGoogle Scholar
  3. Aziz ul Hassan, Tabinda, A. B., Abbas, M., & Khan, A. M. (2014). Organochlorine and pyrethroid pesticides analysis in dairy milk samples collected from cotton growing belt of Punjab, Pakistan. Pakistan Journal of Agricultural Sciences, 51(2), 321–325.Google Scholar
  4. Bajwa, U., & Sandhu, K. S. (2014). Effect of handling and processing on pesticide residues in food—a review. Journal of Food Science and Technology, 51(2), 201–220. doi: 10.1007/s13197-011-0499-5.CrossRefGoogle Scholar
  5. Bedi, J. S., Gill, J. P., Aulakh, R. S., & Kaur, P. (2015). Pesticide residues in bovine milk in Punjab, India: spatial variation and risk assessment to human health. Archives of Environmental Contamination and Toxicology, 69(2), 230–240. doi: 10.1007/s00244-015-0163-6.CrossRefGoogle Scholar
  6. Bulut, S., Akkaya, L., Gok, V., & Konuk, M. (2011). Organochlorine pesticide (OCP) residues in cow’s, buffalo’s, and sheep’s milk from Afyonkarahisar region, Turkey. Environmental Monitoring and Assessment, 181(1–4), 555–562. doi: 10.1007/s10661-010-1849-x.CrossRefGoogle Scholar
  7. Chen, X., Panuwet, P., Hunter, R. E., Riederer, A. M., Bernoudy, G. C., Barr, D. B., et al. (2014). Method for the quantification of current use and persistent pesticides in cow milk, human milk and baby formula using gas chromatography tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 970, 121–130. doi: 10.1016/j.jchromb.2014.08.018.CrossRefGoogle Scholar
  8. Commission, C. A. (2013). Pesticide residues in food and feed by the and FAO/WHO Food standards, Codex Alimentarius.Google Scholar
  9. Corcellas, C., Feo, M. L., Torres, J. P., Malm, O., Ocampo-Duque, W., Eljarrat, E., et al. (2012). Pyrethroids in human breast milk: occurrence and nursing daily intake estimation. Environment International, 47, 17–22.CrossRefGoogle Scholar
  10. Deti, H., Hymete, A., Bekhit, A. A., Mohamed, A. M. I., & Bekhit, A. E.-D. A. (2014). Persistent organochlorine pesticides residues in cow and goat milks collected from different regions of Ethiopia. Chemosphere, 106, 70–74. doi: 10.1016/j.chemosphere.2014.02.012.CrossRefGoogle Scholar
  11. Economic Survey of Pakistan. (2006). Finance division. Islamabad: Government of Pakistan.Google Scholar
  12. Fang, G., Lau, H. F., Law, W. S., & Li, S. F. Y. (2012). Systematic optimisation of coupled microwave-assisted extraction-solid phase extraction for the determination of pesticides in infant milk formula via LC–MS/MS. Food Chemistry, 134(4), 2473–2480. doi: 10.1016/j.foodchem.2012.04.076.CrossRefGoogle Scholar
  13. FAO/WHO Food Standards Programme, C. A. C. (2008). Report of the fortieth session of the Codex Committee on Pesticide Residues. Hangzhou, China.Google Scholar
  14. Goodarzi, M., Ortiz, E. V., Coelho, L. D. S., & Duchowicz, P. R. (2010). Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides. Atmospheric Environment, 44(26), 3179–3186. doi: 10.1016/j.atmosenv.2010.05.025.CrossRefGoogle Scholar
  15. Iftikhar, B., Siddiqui, S., & Rehman, S. (2014). Assessment of the dietary transfer of pesticides to dairy milk and its effect on human health. African Journal of Biotechnology, 13(3), 476–485.CrossRefGoogle Scholar
  16. John, P. J., Bakore, N., & Bhatnagar, P. (2001). Assessment of organochlorine pesticide residue levels in dairy milk and buffalo milk from Jaipur City, Rajasthan, India. Environment International, 26(4), 231–236. doi: 10.1016/S0160-4120(00)00111-2.CrossRefGoogle Scholar
  17. Kalwar, N. H., Nafady, A., Sirajuddin, Sherazi, S. T. H., Soomro, R. A., Hallam, K. R., et al. (2015). Catalytic degradation of imidacloprid using L-serine capped nickel nanoparticles. Materials Express, 5(2), 121–128. doi: 10.1166/mex.2015.1224.Google Scholar
  18. Kampire, E., Kiremire, B. T., Nyanzi, S. A., & Kishimba, M. (2011). Organochlorine pesticide in fresh and pasteurized cow’s milk from Kampala markets. Chemosphere, 84(7), 923–927. doi: 10.1016/j.chemosphere.2011.06.011.CrossRefGoogle Scholar
  19. Khan, M., Mahmood, H. Z., & Damalas, C. A. (2015). Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection, 67, 184–190. doi: 10.1016/j.cropro.2014.10.013.CrossRefGoogle Scholar
  20. Khwaja, S., Mushtaq, R., Mushtaq, R., Yousuf, M., Attaullah, M., Tabbassum, F., et al. (2013). Monitoring of biochemical effects of organochlorine pesticides on human health. Health, 05(8), 9. doi: 10.4236/health.2013.58182.CrossRefGoogle Scholar
  21. Koesukwiwat, U., Lehotay, S. J., Miao, S., & Leepipatpiboon, N. (2010). High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography-time-of-flight mass spectrometry. Journal of Chromatography A, 1217(43), 6692–6703. doi: 10.1016/j.chroma.2010.05.012.CrossRefGoogle Scholar
  22. Lehotay, S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90(2), 485–520.Google Scholar
  23. Lehotay, S. J., Mastovska, K., Lightfield, A. R., & Gates, R. A. (2010a). Multi-analyst, multi-matrix performance of the QuEChERS approach for pesticide residues in foods and feeds using HPLC/MS/MS analysis with different calibration techniques. Journal of AOAC International, 93(2), 355–367.Google Scholar
  24. Lehotay, S. J., Son, K. A., Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., et al. (2010b). Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1217(16), 2548–2560. doi: 10.1016/j.chroma.2010.01.044.CrossRefGoogle Scholar
  25. Luzardo, O. P., Almeida-Gonzalez, M., Henriquez-Hernandez, L. A., Zumbado, M., Alvarez-Leon, E. E., & Boada, L. D. (2012). Polychlorobiphenyls and organochlorine pesticides in conventional and organic brands of milk: occurrence and dietary intake in the population of the Canary Islands (Spain). Chemosphere, 88(3), 307–315. doi: 10.1016/j.chemosphere.2012.03.002.CrossRefGoogle Scholar
  26. Martins, J. G., Amaya Chávez, A., Waliszewski, S. M., Colín Cruz, A., & García Fabila, M. M. (2013). Extraction and clean-up methods for organochlorine pesticides determination in milk. Chemosphere, 92(3), 233–246. doi: 10.1016/j.chemosphere.2013.04.008.CrossRefGoogle Scholar
  27. Muhammad, F., Javed, I., Akhtar, M., Zia-ur-Rahman, Awais, M. M., Saleemi, M. K., et al. (2012). Quantitative structure activity relationship and risk analysis of some pesticides in the cattle milk. Pakistan Veterinary Journal, 32(4), 589–592.Google Scholar
  28. Muhammad, F., Awais, M. M., Akhtar, M., & Anwar, M. I. (2013). Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk. Iranian Journal of Environmental Health Science & Engineering, 10(1), 4.CrossRefGoogle Scholar
  29. Muñoz-Quezada, M. T., Lucero, B. A., Barr, D. B., Steenland, K., Levy, K., Ryan, P. B., et al. (2013). Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology, 39, 158–168. doi: 10.1016/j.neuro.2013.09.003.CrossRefGoogle Scholar
  30. Pagliuca, G., Serraino, A., Gazzotti, T., Zironi, E., Borsari, A., & Rosmini, R. (2006). Organophosphorus pesticides residues in Italian raw milk. The Journal of Dairy Research, 73(3), 340–344. doi: 10.1017/s0022029906001695.CrossRefGoogle Scholar
  31. Rejeb, S. B., Cléroux, C., Lawrence, J. F., Geay, P.-Y., Wu, S., & Stavinski, S. (2001). Development and characterization of immunoaffinity columns for the selective extraction of a new developmental pesticide: thifluzamide, from peanuts. Analytica Chimica Acta, 432(2), 193–200. doi: 10.1016/S0003-2670(00)01376-3.CrossRefGoogle Scholar
  32. Rissato, S. R., Galhiane, M. S., Apon, B. M., & Arruda, M. S. (2005). Multiresidue analysis of pesticides in soil by supercritical fluid extraction/gas chromatography with electron-capture detection and confirmation by gas chromatography–mass spectrometry. Journal of Agricultural and Food Chemistry, 53(1), 62–69. doi: 10.1021/jf048772s.CrossRefGoogle Scholar
  33. Sanagi, M. M., Salleh, S., Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., et al. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis, 32(2), 155–161. doi: 10.1016/j.jfca.2013.09.001.CrossRefGoogle Scholar
  34. Sapahin, H. A., Makahleh, A., & Saad, B. (2014). Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography-flame photometric detector. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2014.12.001.Google Scholar
  35. Serrano, R., Blanes, M. A., & López, F. J. (2008). Biomagnification of organochlorine pollutants in farmed and wild gilthead sea bream (Sparus aurata) and stable isotope characterization of the trophic chains. Science of the Total Environment, 389(2–3), 340–349. doi: 10.1016/j.scitotenv.2007.09.020.CrossRefGoogle Scholar
  36. Shahzadi, N., Imran, M., Sarwar, M., Hashmi, A. S., & Wasim, M. (2013). Identification of pesticides residues in different samples of milk. Journal of Agroalimentary Processes and Technologies, 19(2), 167–172.Google Scholar
  37. Stocka, J., Tankiewicz, M., Biziuk, M., & Namieśnik, J. (2011). Green aspects of techniques for the determination of currently used pesticides in environmental samples. International Journal of Molecular Sciences, 12(11), 7785–7805. doi: 10.3390/ijms12117785.CrossRefGoogle Scholar
  38. Sun, H., Ge, X., Lv, Y., & Wang, A. (2012). Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. Journal of Chromatography, A, 1237, 1–23. doi: 10.1016/j.chroma.2012.03.003.CrossRefGoogle Scholar
  39. Tariq, M. I., Afzal, S., Hussain, I., & Sultana, N. (2007). Pesticides exposure in Pakistan: a review. Environment International, 33(8), 1107–1122. doi: 10.1016/j.envint.2007.07.012.CrossRefGoogle Scholar
  40. Tsiplakou, E., Anagnostopoulos, C. J., Liapis, K., Haroutounian, S. A., & Zervas, G. (2010). Pesticides residues in milks and feedstuff of farm animals drawn from Greece. Chemosphere, 80(5), 504–512. doi: 10.1016/j.chemosphere.2010.04.069.CrossRefGoogle Scholar
  41. Zheng, G., Han, C., Liu, Y., Wang, J., Zhu, M., Wang, C., et al. (2014). Multiresidue analysis of 30 organochlorine pesticides in milk and milk powder by gel permeation chromatography-solid phase extraction-gas chromatography-tandem mass spectrometry. Journal of Dairy Science, 97(10), 6016–6026. doi: 10.3168/jds.2014-8192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sana Jawaid
    • 1
  • Farah N. Talpur
    • 1
    Email author
  • Shafi M. Nizamani
    • 1
  • Abid A. Khaskheli
    • 1
  • H. I. Afridi
    • 1
  1. 1.National Center of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan

Personalised recommendations