Skip to main content
Log in

Discriminant analysis for the prediction of sand mass distribution in an urban stormwater holding pond using simulated depth average flow velocity data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m3 s−1, representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size > 0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5 %. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20 %) compared to group 2 (16.90 to 45.55 %). Two Fisher’s linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1 = −9.405 + 4232.119 × A − 1795.805 × B + 281.224 × C, and F 2 = −2.842 + 2725.137 × A − 1307.688 × B + 231.353 × C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m3 s−1, respectively. The model correctly predicts 88.9 and 100.0 % of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8 % are correctly classified. The model predicts that 31.4 % of the model domain areas consist of high-sand mass composition areas and the remaining 68.6 % comprise low-sand mass composition areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significant of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59–81.

    Article  Google Scholar 

  • Bowes, M. J., Leach, D. V., & House, W. A. (2005). Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, U.K. Science of the Total Environment, 336(1–3), 225–41.

    Article  CAS  Google Scholar 

  • Camnasio, E., Orsi, E., & Schleiss, A. J. (2011). Experimental study of velocity fields in rectangular shallow reservoirs. Journal of Hydraulic Research, 49(3), 352–358.

    Article  Google Scholar 

  • Camnasio, E., Erpicum, S., Orsi, E., Pirotton, M., Schleiss, A. J., & Dewals, B. (2013). Coupling between flow and sediment deposition in rectangular shallow reservoirs. Journal of Hydraulic Research, 51(5), 535–547.

    Article  Google Scholar 

  • Dewals, B., Erpicum, S., Archambeau, P., & Pirotton, M. (2012). Experimental study of velocity fields in rectangular shallow reservoirs. Journal of Hydraulic Research, 50(4), 435–436.

    Article  Google Scholar 

  • Droppo, I. G., Liss, S. N., Williams, D., Nelson, T., Jaskot, C., & Trapp, B. (2009). Dynamic existence of waterborne pathogens within river sediment compartments: implications for water quality regulatory affairs. Environmental Science and Technology, 43(6), 1737–1743.

    Article  CAS  Google Scholar 

  • Dufresne, M., Dewals, B. J., Erpicum, S., Archambeau, P., & Pirotton, M. (2010). Classification of flow patterns in rectangular shallow reservoirs. Journal of Hydraulic Research, 48(2), 197–204.

    Article  Google Scholar 

  • Dufresne, M., Dewals, B. J., Erpicum, S., Archambeau, P., & Pirotton, M. (2011). Numerical investigation of flow patterns in rectangular shallow reservoirs. Engineering Applications of Computational Fluid Mechanics, 5(2), 247–258.

  • Dufresne, M., Dewals, B., Erpicum, S., Archambeau, P., & Pirotton, M. (2012). Flow patterns and sediment deposition in rectangular shallow reservoirs. Water and Environment Journal, 26, 504–510.

    Article  Google Scholar 

  • Field, A. (2009). Discovering statistics using SPSS: (and sex and drugs and rock ‘n’ roll). Introducing statistical methods. SAGE, ISBN 9781847879073.

  • Greb, S. R., & Bannerman, R. T. (1997). Influence of particle size on wet pond effectiveness. Water Environment Research, 69(6), 1134–1138.

    Article  CAS  Google Scholar 

  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. 7th ed. Prentice Hall.

  • Haregeweyn, N., Poesen, J., Nyssen, J., De Wit, J., Haile, M., Govers, G., et al. (2006). Reservoirs in Tigray (northern Ethiopia): characteristics and sediment deposition problems. Land Degradation & Development, 17(2), 211–230.

    Article  Google Scholar 

  • He, C., Post, Y., Rochfort, Q., & Marsalek, J. (2014). Field study of an innovative sediment capture device: bottom grid structure. Water, Air, and Soil Pollution, 225(4), 1–11.

    Google Scholar 

  • Ho, J., & Kim, W. (2012). Discrete phase modeling study for particle motion in storm water retention. KSCE Journal of Civil Engineering, 16(6), 1071–1078. doi:10.1007/s12205-012-1304-3.

    Article  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (5th ed., p. 517). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Khan, S., Melville, B. W., Shamseldin, A. Y., & Fischer, C. (2013). Investigation of flow patterns in storm water retention ponds using CFD. Journal of Environmental Engineering, 139(1), 61–69.

    Article  CAS  Google Scholar 

  • King, I. P. (2005a). RMAGEN. A program for generation of finite element networks. Version 7.3d. Sydney: Resource Modelling Associates.

    Google Scholar 

  • King, I. P. (2005b). RMA-2. A two dimensional finite element model for flow estuaries and streams. Version 7.4e. Sydney: Resource Modelling Associates.

    Google Scholar 

  • Le Roux, J. P., & Rojas, E. M. (2007). Sediment transport patterns determined from grain size parameters: overview and state of the art. Sedimentary Geology, 202(3), 473–488.

    Article  Google Scholar 

  • Luoma, S. N., & Rainbow, P. S. (2008). Metal contamination in aquatic environments: science and lateral management. Cambridge: Cambridge University Press.

    Google Scholar 

  • Magni, P., De Falco, G., Como, S., Casu, D., Floris, A., Petrov, A. N., et al. (2008). Distribution and ecological relevance of fine sediments in organic-enriched lagoons: the case study of the Cabras lagoon (Sardinia, Italy). Marine Pollution Bulletin, 56(3), 549–564.

    Article  CAS  Google Scholar 

  • Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical chemical data by the use of cluster analysis (p. 237). New York: Wiley.

    Google Scholar 

  • Montgomery, R. L., Thackston, E. L., & Parker, F. L. (1983). Dredged material sedimentation basin design. Journal of Environmental Engineering (ASCE), 109(2), 466–484.

    Article  CAS  Google Scholar 

  • Packman, A. I., & Salehin, M. (2003). Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia, 494, 291–297.

    Article  Google Scholar 

  • Persson, J. (2000). The hydraulic performance of ponds of various layouts. Urban Water, 2(3), 243–250.

    Article  Google Scholar 

  • Pettersson, T. J. R. (2002). Characteristics of suspended particles in a small stormwater pond. Global Solutions for Urban Drainage. doi:10.1061/40644(2002)25.

    Google Scholar 

  • Raykov, T., & Marcoulides, G. A. (2008). An introduction to applied multivariate analysis (pp. 332–333). New York: Taylor and Francis Group.

    Google Scholar 

  • Razmi, A., Firoozabadi, B., & Ahmadi, G. (2009). Experimental and numerical approach to enlargement of performance of primary settling tanks. Journal of Applied Fluid Mechanics, 2(1), 1–12.

    Google Scholar 

  • Ren, J., & Packman, A. I. (2007). Changes in fine sediment size distributions due to interactions with streambed sediments. Sedimentary Geology, 202(3), 529–537.

    Article  Google Scholar 

  • Sansalone, J. J., & Buchberger, S. G. (1997). Characteristic of solid and metal element distribution in urban highway stormwater. Water Science and Technology, 36(8–9), 155–160.

    Article  CAS  Google Scholar 

  • Tamayol, A., Firoozabadi, B., & Ashjari, M. A. (2010). Hydrodynamics of secondary settling tanks and increasing their performance using baffles. Journal of Environmental Engineering, 136(1), 32–39.

    Article  CAS  Google Scholar 

  • Tarela, P. A., & Menéndez, A. N. (1999). A model to predict reservoir sedimentation. Lakes & Reservoirs: Research and Management, 4, 121–133.

    Article  Google Scholar 

  • Tsavdaris, A., Mitchell, S., & Williams, J. B. (2015). Computational fluid dynamics modelling of different detention pond configurations in the interest of sustainable flow regimes and gravity sedimentation potential. Water and Environment Journal, 29, 129–139.

    Article  CAS  Google Scholar 

  • Van Rijn, L. C. (2007). Principles of sediment transport in rivers, estuaries, and coastal seas. Aqua, Blokzijl, The Netherlands, <www.aquapublications.nl>.

  • Verstraeten, G., & Poesen, J. (2001). Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yields. Earth Surface Processes and Landforms, 26(4), 375–394.

    Article  Google Scholar 

  • Weinstein, J. E., Crawford, K. D., & Garner, T. R. (2010). Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina. Environmental Monitoring and Assessment, 162, 21–35.

    Article  CAS  Google Scholar 

  • Wium-Andersen, T., Nielsen, A. H., Hvitved-Jacobsen, T., & Vollertsen, J. (2011). Heavy metals, PAHs and toxicity in stormwater wet detention ponds. Water Science Technology, 64(2), 503–511.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Department of Irrigation and Drainage (DID) of Malaysia and SMART Control Centre for their support in this project. They would also like to express their gratitude to Kamaruzaman Mamat, Rohaimah Demanah, Lakam Mejus, Juhari Mohd. Yusof, Mod. Omar and Saiful Anuar Tajol Aripin for their assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeremy Andy Dominic or Ahmad Zaharin Aris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominic, J.A., Aris, A.Z., Sulaiman, W.N.A. et al. Discriminant analysis for the prediction of sand mass distribution in an urban stormwater holding pond using simulated depth average flow velocity data. Environ Monit Assess 188, 191 (2016). https://doi.org/10.1007/s10661-016-5192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5192-8

Keywords

Navigation