Skip to main content

Advertisement

Log in

Pioneering investigation of the characteristics and elemental concentrations in the environment of the declining Wadi Maryut Lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wadi Maryut Lake is one of the remaining parts of the ancient Lake Mareotis and is not mentioned in the scientific literature. For the first time, physical and chemical characteristics as well as elemental concentrations in sediment, water, soil, and plants were determined. The lowest metal pollution indices are in the northeastern end of the lake and tend to increase toward the other end. In lake aquatic environment, Al, Fe, K, Mn, Na, B, and Cr are more likely to exist in insoluble form in the southwestern part and in soluble form in the northeastern part. Using different approaches to assess sediment contamination demonstrates that sediments can be categorized as unpolluted. However, the geo-accumulation index suggests that two locations have low anthropogenic influence of Pb and the enrichment factors and the degree of contamination indicate that Co and Pb may be enriched in sediment of some locations. Comparisons with consensus-based sediment quality guidelines revealed that no sample exceeded the probable effect concentration for Cr, Cu, Ni, Pb, and Zn. The most mobile elements in sediment-water and soil-plant systems are Na, K, and Pb. In sediment-water system, Al, Fe, and Mn oxides have the major influence on scavenging of B, K, and Cr. Similarity in the occurrences of Mn, K, and Fe in soil and Mn and Fe in wild plant was found. This work demonstrates the state of decontamination of the lake and confirms its importance as a reference and comparative case for south Mediterranean coastal water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AASTMT / Egis BCEOM International. (2011) Climate change adaptation and natural disasters preparedness in the coastal cities of North Africa. Phase 1: risk assessment for the present situation and horizon 2030—Alexandria Area.

  • Abdel-Moati, M. A. R., & El-Sammak, A. A. (1997). Man-made impact on the geochemistry of the Nile Delta lakes. A study of metals concentrations in sediments. Water, Air, & Soil Pollution, 97, 413–429.

    CAS  Google Scholar 

  • Alexander, C. R., Smith, R. G., Calder, F. D., Schropp, S. J., & Windom, H. L. (1993). The historical record of metal enrichment of two Florida estuaries. Estuaries, 16, 627–637.

    Article  CAS  Google Scholar 

  • Allen, S. E. (1989). Chemical analysis of ecological materials (2nd ed.). Oxford: Blackwell Scientific Publication.

    Google Scholar 

  • Baedeker, K. (1885). Egypt: handbook for travellers: part first, lower Egypt, with the Fayum and the peninsula of Sinai. Karl Baedeker, Leipsic.

  • Bruland, K. W., Bertine, K., Koide, M., & Goldberg, E. D. (1974). History of metal pollution in southern California coastal zone. Environmental Science and Technology, 8, 425–432.

    Article  CAS  Google Scholar 

  • Chamapro, E., Marco, A., & Esplugas, S. (2001). Use of Fenton reagent to improve organic chemical biodegradability. Water Science, 35, 1047–1051.

    Google Scholar 

  • De Cosson, A. (1935). Mareotis; being a short account of the history and ancient monuments of the north-western desert of Egypt and of lake Mareotis. London Country Life Ltd.

  • Din, Z. (1992). Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of straits of Melaka. Marine Pollution Bulletin, 24, 484–492.

    Article  CAS  Google Scholar 

  • El-Mashali, H. A., Badran, H. M., & Elnimr, T. (2015). Metal concentrations in irrigation canals and the Nile River in an intensively exploited agricultural area. Environmental Monitoring and Assessment, 187(136), 1–13.

    CAS  Google Scholar 

  • Goldberg, E. D., Griffin, J. J., Hodge, V., Koide, M., & Windom, H. (1979). Pollution history of the Savannah River estuary. Environmental Science and Technology, 13, 588–594.

    Article  CAS  Google Scholar 

  • Greenberg, A.E., Clesceri, L.S., & Eaton, A.D. (editors) (1992). Standard Methods for the Examination of Water and Waste Water 21th Edition, American Public Health Association (APHA).

  • Kim, F. M., & Daimon, H. (2004). Biodegradability improvement and structural conversion of polyvinyl alcohol (PVA) by sub- and supercritical water reaction. Journal of Chemical Engineering of Japan, 37, 744–750.

    Article  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 5, 1019–1039.

    Article  Google Scholar 

  • Long, E. R., Ingersoll, C. G., & MacDonald, D. D. (2006). Calculation and uses of mean sediment quality guideline quotients: a critical review. Environmental Science and Technology, 40, 1726–1736.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Carr, S., Clader, F. D., Long, E. D., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1994). Soil science: methods and applications. England: Longman Scientific and Technical.

    Google Scholar 

  • Saad, M. A. H., Ezzat, A. A., El Rayis, O. A., & Hafez, H. (1981). Occurrence and distribution of chemical pollutants in lake Mariut, Egypt. II. Heavy Metals. Water, Air, and Soil Pollution, 16, 401–407.

    Article  CAS  Google Scholar 

  • Saad, M. A. H., El Rayis, O. A., & Ahdy, H. H. (1984). Status of nutrients in Lake Mariut, a delta lakein Egypt suffering from intensive pollution. Marine Pollution Bulletin, 15, 408–411.

    Article  CAS  Google Scholar 

  • Saad, M. A. H., McComas, S. R., & Eisenreich, S. J. (1985). Metals and chlorinated hydrocarbons in surficial sediments of three Nile Delta lakes, Egypt. Water, Air, & Soil Pollution, 24, 27–39.

    Article  CAS  Google Scholar 

  • Santschi, P. H., Presley, B. J., Wade, T. L., Garcia-Romero, B., & Baskaran, M. (2001). Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Marine Environmental Research, 52, 51–79.

    Article  CAS  Google Scholar 

  • Schropp, S. J., Lewis, F. G., Windom, H. L., Ryan, J. D., Calder, F. D., & Burney, L. C. (1990). Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13, 227–235.

    Article  CAS  Google Scholar 

  • Seddeek, M. K., Kozae, A. M., Sharshar, T., & Badran, H. M. (2009). Reduction of the dimensionality and comparative analysis of multivariate radiological data. Applied Radiation and Isotopes, 67, 1721–1728.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA. (1996). Acid digestion of sludges, solids and soils, USEPA 3050B, In SW-846 Pt 1. Office of Solid and Hazardous Wastes. Cincinnati: USEPA.

    Google Scholar 

  • Vrettos, T. (2001). Alexandria, City of the Western Mind. New York: The Free Press.

    Google Scholar 

  • Warne, A. G., & Stanley, D. J. (1993). Late quaternary evolution of the northwest Nile Delta and adjacent coast in the Alexandria Region, Egypt. Journal of Coastal Research, 9, 26–64.

    Google Scholar 

  • Windom, H. L., Schropp, S. J., Calder, F. D., Ryan, J. D., Smith, R. G., Burney, L. C., Lewis, F. G., & Rawlinson, C. H. (1989). Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environmental Science and Technology, 23, 314–320.

    Article  CAS  Google Scholar 

  • Yu, C. P., & Yu, Y. H. (2002). Identifying useful real-time control parameters in ozonation processes. Water Science and Technology, 42, 435–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Badran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.I., Badran, H.M. Pioneering investigation of the characteristics and elemental concentrations in the environment of the declining Wadi Maryut Lake. Environ Monit Assess 188, 181 (2016). https://doi.org/10.1007/s10661-016-5189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5189-3

Keywords

Navigation