Skip to main content
Log in

Activity of extracellular enzymes on the marine beach differing in the level of antropopressure

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The level of activity of extracellular enzymes was determined on two transects characterised by different anthropic pressure on a sandy beach in Ustka, the southern coast of the Baltic Sea. Generally, the level of activity of the studied enzymes was higher on the transect characterised by high anthropic pressure. The ranking order of the mean enzyme activity rates in the sand was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > chitinase. Each enzyme had its characteristic horizontal profile of activity. The levels of activity of the studied enzymes were slightly higher in the surface than subsurface sand layer. Extracellular enzymatic activities were strongly influenced by the season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth, A. M., & Goulder, R. (2000). Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England. Science of the Total Environment, 251(252), 191–204.

    Article  Google Scholar 

  • Arnosti, C., Ziervogel, K., Ocampo, L., & Ghobrial, S. (2009). Enzyme activities in the water column and in shallow permeable sediments from the northeastern Gulf of Mexico. Estuarine, Coastal and Shelf Science, 84, 202–208.

    Article  CAS  Google Scholar 

  • Arts, M. T., Evans, M. S., & Robarts, R. D. (1992). Seasonal patterns of total and energy reserve lipids of dominant zooplanktonic crustaceans from hyper-eutrophic lake. Oceanologia, 90, 560–571.

    Google Scholar 

  • Baltar, F., Aristegui, J., Gasol, J. M., Sintes, E., Aken, H. M., & Herndl, G. J. (2010). Hugh dissolved eztracellular enzymatic activity in the deep central Atlantic Ocean. Aquatic Microbial Ecology, 58, 287–302.

    Article  Google Scholar 

  • Boetius, A. (1995). Microbial hydrolytic enzyme activities in deep-sea sediments. Helgoland Marine Research, 49, 177–187.

    Google Scholar 

  • Brown, A. C., & Mclachlan, A. (1990). Ecology of Sandy Shores (p. 328). Amsterdam: Elsevier.

    Google Scholar 

  • Cotterell, M. T., Moore, J. A., & Kirchman, D. L. (1999). Chitinases from uncultured marine microorganisms. Applied and Environmental Microbiology, 65, 2553–2557.

    Google Scholar 

  • Crapez, M., Neto, J. A. B., & Bispo, M. G. (2003). Bacterial enzymatic activity and bioavaibility of heavy metals in sediments from Boa Viagem Beach (Guanabara Bay). Anuário do Instituto de Geociênacias –UFRJ, 26, 60–68.

    Google Scholar 

  • Davey, K. E., Kirby, R. R., Turley, C. M., Weightman, A. J., & Fry, J. C. (2001). Depth variation of bacterial extracellular enzyme activity and population diversity in the northeastern North Atlantic Ocean. Deep-Sea Research II, 48, 1003–1017.

    Article  CAS  Google Scholar 

  • Elmir, S. M., Wright, M. E., Abdelzaher, A., Solo-Gabriele, H. N., Fleming, L. E., Miller, G., Rybolowik, M., Shih, M. T., Pillai, P., Copoer, J. E., & Quaye, E. A. (2007). Quantitative evaluation of bacteria released by bathers in marine water. Water Research, 41, 3–10.

    Article  CAS  Google Scholar 

  • Fabiano, M., & Danovaro, R. (1998). Enzymatic activity, bacterial distribution and organic matter composition in sediments of the Ross Sea (Antarctica). Applied and Environmental Microbiology, 64, 3838–3845.

    CAS  Google Scholar 

  • Fontana, L. F., da Silva, F. S., Krepsky, N., Barcelon, M. A., & Crapez, M. (2006). Natural attenuation of aromatic hydrocarbon from sandy sediment in Boa Viagem Baech, Guanabara Bay, RJ Brazil. Geochemica Brasiliensis, 20, 62–70.

    Google Scholar 

  • Francoeur, S. N., & Wetzel, R. G. (2003). Regulation of periphytic leucine–aminopeptidase activity. Aquatic Microbial Ecology, 31, 249–258.

    Article  Google Scholar 

  • Gallizia, I., Vezzulli, L., & Fabiano M. (2005). Evaluation of different bioremediation protocols to enhance decomposition of organic polymers in harbour sediments. Biodegradation, 16, 569–579.

  • Hakulinen, R., Kähkönen, M. A., & Salkinoja-Salonen, M. (2005). Vertical distribution of sediment enzyme activities involved in the cycling of carbon, nitrogen, phosphorus and sulphur in three boreal rural lakes. Water Research, 39, 1319–1326.

    Article  Google Scholar 

  • Hoppe, H. G. (2003). Phosphatase activity in the sea. Hydrobiologia, 493, 187–200.

    Article  CAS  Google Scholar 

  • Ishii, S., Hansen, D. L., Hicks, R. E., & Sadowsky, M. J. (2007). Beach sand and sediment are temporal sinks and sources of Escherichia coli in lake superior. Environmental Science and Technology, 41, 2203–2209.

    Article  CAS  Google Scholar 

  • Jocz, J., (2010). Dynamic concentration of protein and chlorophyll in sand beach of different anthropopressure. Master’s thesis, Pomeranian University in Słupsk pp.47.

  • Jones, F., & White, W. R. (1984). Health amenity aspects of surface water. Water Pollution Control, 83, 215–225.

    Google Scholar 

  • Kaur, K., Dattajirao, V., Shivastava, V., & Bhardwaj, U. (2012). Isolation and characterization of chitosan-producing bacteria from beaches of Chennai, India. Hindwai Publishing Corporation Enzyme Research doi:10.11555/2012/421683

  • Kloeke, F. V., Baty, A. M., Eastburn, C. C., Diwu, Z., & Geesey, G. G. (1999). Novel method for screening bacterial colonies for phosphatase activity. Journal of Microbiology Methods, 38, 25–31.

  • Kolehmainen, R. E., Korpela, J. P., Münster, U., Puhakka, J. A., & Tuovinen, O. H. (2009). Extracellular enzyme activities and nutrient availability during artificial groundwater recharge. Water Research, 43, 405–416.

    Article  CAS  Google Scholar 

  • Koop, K., & Griffiths, C. L. (1982). The relative significance of bacteria meio and macrofauna on exposed sand beach. Marine Biology, 66, 295–300.

    Article  Google Scholar 

  • Koop, K., Newell, R. C., & Lucas, M. I. (1982). Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. Marine Ecology Progress Series, 9, 91–96.

    Article  CAS  Google Scholar 

  • Köster, M., Dahlke, S., & Meyer-Reil, L.–. A. (2005). Microbial colonization and activity in relation to organic carbon in sediments of hypertrophic coastal waters (Nordrügensche Bodden, Southeren Baltic Sea). Aquatic Microbial Ecology, 39, 69–83.

    Article  Google Scholar 

  • Kramarska, R., Uscinowicz, Sz. Zachowicz, J., Przezdziecki, P., Warzocha, J., Netzel, J., & Janusz, J. (2003). Identification of submarine deposit drifts to artificial swelling. Department of Marine in Słupsk (in Polish).

  • Krstulović, N. (1980). Quantitative and qualitative investigations of organic phosphorus decomposing bacteria in the Central Adriatic. Acta Adriatica, 21, 203–218.

    Google Scholar 

  • MacCarthy, M. D., Benner, R., & Hedges, J. I. (1998). Major bacterial contribution to marine dissolved organic nitrogen. Science, 281, 231–234.

    Article  Google Scholar 

  • Martinez, J., Smith, D. C., Steward, D. F., & Azam, F. (1996). Variability in ectohydrolytic enzyme actives of pelagic marine bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology, 10, 223–229.

    Article  Google Scholar 

  • Misic, C., & Fabiano, M. (2005). Enzymatic activity on sandy beaches of the Ligurian Sea (NW Mediterranean). Microbial Ecology, 49, 513–522.

    Article  CAS  Google Scholar 

  • Misic, C., & Fabiano, M. (2006). Ectoenzymatic activity and its relationship chlorophyll-a and bacteria in the Gulf of Genoa (Ligiurian Sea Mediterranean NW). Journal of Marine Systems, 60, 193–206.

    Article  Google Scholar 

  • Misic, C., & Harriague, A. C. (2007). Enzymatic activity and organic substrates on sandy beach of the Ligurian Sea (NW Mediterranean) influenced by anthropogenic pressure. Aquatic Microbial Ecology, 47, 239–251.

    Article  CAS  Google Scholar 

  • Misic, C., Harriague, A. C., & Trielli, F. (2011). Organic matter recycling in a beach environment influenced by sunscreen products and increased inorganic nutrient supply (Sturla, Ligurian Sea, NW Mediterranean). Science of the Total Environment, 409, 1689–1696.

    Article  CAS  Google Scholar 

  • Mudryk, Z. J., & Podgórska, B. (2005). Spatial variability in the activity of hydrolytic enzymes in a marine beach (southern Baltic Sea). Polish Journal Ecology, 53, 255–260.

    CAS  Google Scholar 

  • Mudryk, Z. J., & Podgórska, B. (2006). Enzymatic activity bacterial strains isolated from marine beach. Polish Journal Ecology, 15, 441–448.

    CAS  Google Scholar 

  • Mudryk, Z., & Podgórska, B. (2007). Culturable microorganisms in sandy beaches in south Baltic Sea. Polish Journal Ecology, 55, 221–231.

    Google Scholar 

  • Mudryk, Z., & Skórczewski, P. (2000). Occurrence and activity of lipolytic bacterioneuston and bacterioplankton in the estuarine lake Gardno. Estuarine, Coastal and Shelf Science, 51, 763–772.

    Article  CAS  Google Scholar 

  • Mudryk, Z., Skórczewski, P., Perliński, P., & Wielgat, M. (2011). Studies on heterotrophic bacteria decomposing some macromolecular compounds in two marine beaches. Oceanological and Hydrobiological Studies, 40, 74–83.

    Article  CAS  Google Scholar 

  • Münster, U. (1992). Microbial extracellular enzyme activities in humex Lake Skajervatjern. Environment International, 18, 637–647.

    Article  Google Scholar 

  • Novitsky, J. A., & MacSween, M. C. (1989). Microbiology of a high energy beach sediment: evidence for an active and growing community. Marine Ecology Progress Series, 52, 71–75.

    Article  Google Scholar 

  • Olańczuk–Neyman, K., & Jankowska, K. (1998). Bacteriological investigations of the sandy beach ecosystem in Sopot. Oceanologia, 40, 137–151.

    Google Scholar 

  • Omero, C., Horowitz, B. A., & Chet, I. (2001). A convenient fluorometric method foe the detection of extracellular N-acetylglucosoaminidase production by filamentous fungi. Journal of Microbiological Methods, 43, 165–169.

    Article  CAS  Google Scholar 

  • Pamer, E., Vujovic, G., Knezevic, P., Kojic, D., Prvulovic, D., Mijanovic, B., & Gruber-Lajsic, G. (2011). Water quality in lakes of Vojevodina. International Journal of Environmental Research, 5, 891–900.

    CAS  Google Scholar 

  • Patel, A. B., Fukami, K., & Nishijama, T. (2000). Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan. Aquatic Microbial Ecology, 21, 139–147.

    Article  Google Scholar 

  • Piechocka, A, (2010). Dynamic concentration of carbohydrates and lipids in sand beach of different anthropopressure. Master’s thesis, Pomeranian University in Słupsk pp.60

  • Podgórska, B., & Mudryk, Z. (2003). Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea beach. Estuarine, Coastal and Shelf Science, 56, 539–546.

    Article  Google Scholar 

  • Podgórska, B., & Mudryk, Z. (2007). Physiological properties of bacteria inhabiting polluted and unpolluted marine sandy beaches (Southern Baltic Sea). Polish Journal Ecology, 55, 15–26.

    Google Scholar 

  • Polymenakou, P. N., Lampadariou, N., & Tselepides, A. (2008). Exo-enzymatic activity and organic matter properties in deep-sea canyon and slope systems off the southern Cretan margin. Deep-Sea Research, 1(55), 1318–1329.

    Article  Google Scholar 

  • Poremba, K., & Hoppe, H.-G. (1995). Spatial variation of benthic microbial production and hydrolytic enzymatic activity down the contionental slope of the Celtic Sea. Marine Ecology Progress Series, 118, 237–245.

    Article  Google Scholar 

  • Raghul, S. S., & Bhat, S. G. (2011). Seasonal variation in the hydrolytic exoenzyme profile of Vibrio sp. associated with the marine benthic environment of South India. Indian Journal of Geo-Marine Science, 40, 826–833.

    Google Scholar 

  • Reemtsma, T., Haake, B., Ittekkot, V., Nair, R. R., & Brockmann, U. H. (1990). Downward flux of particulate fatty acids in the Central Arabian Sea. Marine Chemistry, 29, 277–299.

    Article  Google Scholar 

  • Sala, M. M., Karner, M., Arin, L., & Marrase, C. (2001). Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities. Aquatic Microbial Ecology, 23, 301–311.

    Article  Google Scholar 

  • Senjarini, K., Karsten, U., & Schumann, R. (2009). Application of fluorescence markers for diagnosios bacterial assemblage: hydrolytic enzyme activity in aquatic ecosytem. International Journal of Intergrative Biology, 4, 74–78.

    Google Scholar 

  • Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  • Skórczewski, P., Mudryk, Z., & Kuliński, B. (1999). Optimization of measurement enzyme activity using fluorogenic substrates in water. Baltic Coastal Zone, 3, 41–52.

    Google Scholar 

  • Skórczewski, P., Mudryk, Z., Gackowska, J., & Perliński, P. (2012). Abundance and distribution of fecal indicator bacteria in recreational beach sand in the southern Baltic sea. Revista de Biología Marina y Oceanografía, 47, 503–512.

    Article  Google Scholar 

  • Spilmont, N., Migné, A., Lefebvre, A., Artigas, L. F., Rauch, M., & Davoult, D. (2005). Temporal variability of intrtidial benthic metabolism under emersed conditions in an exposed sandy beach (Wimereux, eastern English Channel, France). Journal of Sea Research, 53, 161–167.

    Article  CAS  Google Scholar 

  • Tiquia, S. M. (2011). Extracellular hydrolytic enzyme activities of the heterotrophic microbial communities of the Rouge River: An approach to evaluate ecosystem response to urbanization. Microbial Ecology, 62, 679–689.

    Article  CAS  Google Scholar 

  • Trojanowski, J., Bigus, K., & Trojanowska, C. (2011). Differences of chemical components in beaches sediments with dissimilar anthropopressure. Baltic Coastal Zone, 15, 109–120.

    Google Scholar 

  • Uraban–Malinga, B., & Opaliński, K. W. (1999). Vertical zonation of the total, biotic and abiotic oxygen consumption in a Baltic sandy beach. Oceanolgical Study, 28, 85–96.

    Google Scholar 

  • Uraban–Malinga, B., & Opaliński, K. W. (2001). Interstitial community oxygen consumption in a Baltic sandy beaches: horizontal zonation. Oceanologia, 43, 455–468.

    Google Scholar 

  • Velji, M. J., & Albright, J. (1986). Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter and kelp blade samples following pyrophosphate and ultrasound treatments. Canadian Journal of Microbiology, 32, 121–126.

    Article  Google Scholar 

  • Wright, M. E., Solo-Gabrieke, H. M., Elmir, S., & Fleming, L. E. (2009). Microbial load from animal feces at a recreational beach. Marine Pollution Bulletin, 58, 1649–1656.

    Article  CAS  Google Scholar 

  • Zawadzka, E. (1996). Litho - morphodynamics in the vicinity of small ports of the Polish Central Coast. In J. Taussik & J. Mitchel (Eds.), Partnership of the Coastal Management (pp. 353–360). Cardigan: Samara Publ. Limited.

    Google Scholar 

Download references

Acknowledgments

We thank Arkadiusz Rekowski for providing samples and some microbiological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Perliński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perliński, P., Mudryk, Z.J. Activity of extracellular enzymes on the marine beach differing in the level of antropopressure. Environ Monit Assess 188, 188 (2016). https://doi.org/10.1007/s10661-016-5180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5180-z

Keywords

Navigation