Skip to main content
Log in

New method for quantification of dye sorption using SBA mesoporous silica as a target sorbent

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work, a new method for the quantification of methyl violet cationic dye sorption onto SBA-15 mesoporous silica was developed. This method related the intensity of coloration of SBA-15 samples (after reached equilibrium sorption) within dye concentration in aqueous solution using Image-Pro Plus software. The sorption process of methyl violet dye onto SBA-15 was analyzed varying different initial parameters (dye concentration, mass of sorbent, pH of dye solution, and contact sorption time). SBA-15 proved as efficient sorbent for removal of methyl violet dye in contact time of 5 min, with maximum percentage of dye removal 99 % at pH 8. The results obtained from Image-Pro Plus showed to be in good agreement with the sorption parameters obtained by UV/Vis spectroscopy, which has been the most commonly used instrument for quantification of dye sorption. The image analysis method proved well prediction of dye concentrations with maximum relative error of 1.83 %. The advantages of this method are low cost and reliable quantitative evaluation with minimum of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77, 16–23.

    Article  CAS  Google Scholar 

  • Annadurai, G., Juang, R., & Lee, D. (2002). Use of cellulose based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials B, 92, 263–274.

    Article  CAS  Google Scholar 

  • Asouhidou, D. D., Triantafyllidis, K. S., Lazaridis, N. K., Matis, K. A., Kim, S. S., & Pinnavai, T. J. (2009). Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 117, 257–267.

    Article  CAS  Google Scholar 

  • Ayad, M. M., & El-Nasr, A. A. (2010). Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. Journal of Physical Chemistry C, 114, 14377–14383.

    Article  CAS  Google Scholar 

  • Azizian, S., Haerifar, M., & Bashiri, H. (2009). Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chemical Engineering Journal, 146, 36–41.

    Article  CAS  Google Scholar 

  • Barczyk, K., Mozgawa, W., & Król, M. (2014). Studies of anions sorption on natural zeolites. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 133, 876–882.

    Article  CAS  Google Scholar 

  • Bonetto, L. R., Ferrarini, F., de Marco, C., Crespo, J. S., Guégan, R., & Giovanela, M. (2015). Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, 6, 11–20.

    Article  Google Scholar 

  • Dar, A., Shafique, U., Anwar, J., Zaman, W., & Naseer, A. (2012). A simple spot test quantification method to determine formaldehyde in aqueous samples. Journal of Saudi Chemical Society. doi:10.1016/j.jscs.2012.12.002.

    Google Scholar 

  • Dávila-Jimenez, M. M., Elizalde-Gonzalez, M. P., & Peláez-Cid, A. A. (2005). Adsorption interaction between natural adsorbents and textile dyes in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254(1–3), 107–114.

    Article  Google Scholar 

  • Dhaouadi, H., & M’Henni, F. (2009). Vat dye sorption onto crude dehydrated sewage sludge. Journal of Hazardous Materials, 164, 448–458.

    Article  CAS  Google Scholar 

  • Dobritoiu, R., & Patachia, S. (2013). A study of dyes sorption on biobased cryogels. Applied Surface Science, 285P, 56–64.

    Article  Google Scholar 

  • Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20, 295–300.

    Article  CAS  Google Scholar 

  • Greenwald, M. J., Redding, A. M., & Cannon, F. S. (2015). A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions. Water Research, 68, 784–792.

    Article  CAS  Google Scholar 

  • Hameed, B. H. (2008). Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, 154, 204–212.

    Article  CAS  Google Scholar 

  • Hu, G., Heitmann, J. A., Rojas, O. J., Pawlak, J. J., & Argyropoulos, D. S. (2010). Monitoring cellulase protein adsorption and recovery using SDS-PAGE. Industrial & Engineering Chemistry Research, 49, 8333–8338.

    Article  CAS  Google Scholar 

  • Iskander, A. L., Khald, E. M., & Sheta, A. S. (2011). Zinc and manganese sorption behavior by natural zeolite and bentonite. Annals of Agricultural Sciences, 56, 43–48.

    Article  Google Scholar 

  • Karima, Z., Mathewa, A. P., Grahn, M., Mouzon, J., & Oksman, K. (2014). Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydrate Polymers, 112, 668–676.

    Article  Google Scholar 

  • Khan Rao, R. A., Khan, M. A., & Hameed, B. H. (2009). Sorption/desorption studies on some natural minerals for the removal of toxic organic pollutants from aqueous solution. Chemical Engineering Journal, 152, 421–427.

    Article  Google Scholar 

  • Kokunesoski, M., Gulicovski, J., Matovic, B., Logar, M., Milonjic, S. K., & Babic, B. (2010). Synthesis and surface characterization of ordered mesoporous silica SBA-15. Materials Chemistry and Physics, 124, 1248–1252.

    Article  CAS  Google Scholar 

  • Komissarchik, S., & Nyanikova, G. (2014). Test systems and a method for express detection of synthetic food dyes in drinks. LWT - Food Science and Technology, 58, 315–320.

    Article  CAS  Google Scholar 

  • Kruk, M., & Jaroniec, M. (2000). Characterization of the porous structure of SBA-15. Chemistry of Materials, 12, 1961–1968.

    Article  CAS  Google Scholar 

  • Li, W., Yue, Q., Tu, P., Ma, Z., Gao, B., Li, J., & Xu, X. (2011). Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chemical Engineering Journal, 178, 197–203.

    Article  CAS  Google Scholar 

  • Lin, Q., Pan, J., Lin, Q., & Liu, Q. (2013). Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere. Journal of Hazardous Materials, 263, 517–524.

    Article  CAS  Google Scholar 

  • Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, L. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268, 111–116.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2011). Equilibrium, kinetics, and thermodynamics of dye removal using alginate in binary systems. Journal of Chemical & Engineering Data, 56, 2802–2811.

    Article  CAS  Google Scholar 

  • Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of Orange-G and Methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223.

    Article  CAS  Google Scholar 

  • Mitchell, P. J., Hanson, J. C., Quets-Nguyen, A. T., Bergeron, M., & Smith, R. C. (2007). A quantitative method for analysis of in vitro neurite outgrowth. Journal of Neuroscience Methods, 164, 350–362.

    Article  CAS  Google Scholar 

  • Moritz, M., & Geszke-Moritz, M. (2014). Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study. Materials Science and Engineering: C, 41, 42–51.

    Article  CAS  Google Scholar 

  • Nesic, A., Velickovic, S., & Antonovic, D. (2012). Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. Journal of Hazardous Materials, 209–210, 256–263.

    Article  Google Scholar 

  • Nesic, A., Velickovic, S., & Antonovic, D. (2013). Modification of chitosan by zeolite A and adsorption of Bezactive Orange 16 from aqueous solution. Composites: Part B, 53, 145–151.

    Article  CAS  Google Scholar 

  • Nesic, A. R., Velickovic, S. J., & Antonovic, D. G. (2014). Novel composite films based on amidated pectin for ctionic dye adsorption. Colloids and Surfaces B: Biointerfaces, 116, 620–626.

    Article  CAS  Google Scholar 

  • Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Physical removal of textile dyes from efluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E. (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143, 85–95.

    Article  CAS  Google Scholar 

  • Oliveira, F. J. V. E., Maurıcio, A., Melo, J. R., & Airoldi, C. (2013). Inorganic–organic hybrids presenting high basic center content: SBA-15 incorporation, toxic metals sorption and energetic behavior. Materials Research Bulletin, 48, 1045–1056.

    Article  CAS  Google Scholar 

  • Ozdemir, Y., Doğan, M., & Alkan, M. (2006). Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials, 96, 419–427.

    Article  Google Scholar 

  • Panic, V. V., Madzarevic, Z. P., Volkov-Husovic, T., & Velickovic, S. J. (2013). Poly(methacrylic acid) based hydrogels as sorbents for removal of cationic dye basic yellow 28: Kinetics, equilibrium study and image analysis. Chemical Engineering Journal, 217, 192–204.

    Article  CAS  Google Scholar 

  • Perullini, M., Jobbágy, M., Laura Japas, M., & Bilmes, S. A. (2014). New method for the simultaneous determination of diffusion and adsorption of dyes in silica hydrogels. Journal of Colloid and Interface Science, 425, 91–95.

    Article  CAS  Google Scholar 

  • Prasad, K., Kumar, B., Chakravarthy, M., & Prabhu, G. (2012). Applications of ‘tissuequant’– a color intensity quantification tool for medical research. Computer Methods and Programs in Biomedicine, 106, 27–36.

    Article  Google Scholar 

  • Qadri, S., Ganoe, A., & Haik, Y. (2009). Removal and recovery ofacridine orange from solutions by use ofmagnetic nanoparticles. Journal of Hazardous Materials, 169, 318–323.

    Article  CAS  Google Scholar 

  • Qin, Y., Wang, Y., Wang, H., Gao, J., & Qu, Z. (2013). Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance. Procedia Environmental Sciences, 18, 366–371.

    Article  CAS  Google Scholar 

  • Reddy, D., & Lee, S. M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science, 201–202, 68–93.

    Article  Google Scholar 

  • Ryoo, R., Ko, C. H., Kruk, M., Antoschshuk, V., & Jaroniec, M. (2000). Block-copolymer-templated ordered mesoporous silica: array of uniform pores or mesopore-micropore network. The Journal of Physical Chemistry B, 104, 11456–11471.

    Article  Google Scholar 

  • Safa, Y., & Bhatti, H. N. (2011). Biosorption of direct red-31 and direct orange-26 dyes by rice husk: application of factorial design analysis. Chemical Engineering Research and Design, 89, 2566–2574.

    Article  CAS  Google Scholar 

  • Samprovalaki, K., Robbins, P. T., & Fryer, P. J. (2012). A study of diffusion of dyes in model foods using a visual method. Journal of Food Engineering, 110, 441–447.

    Article  CAS  Google Scholar 

  • Santos, S. C. R., Vilar, V. J. P., & Boaventura, R. A. R. (2008). Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, 153, 999–1008.

    Article  CAS  Google Scholar 

  • Xu, R., Xiao, S., Yuan, J., & Zhao, A. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102, 10293–10298.

    Article  CAS  Google Scholar 

  • Xu, C., Tang, W., & Du, J. (2014). A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers: a case study. Carbohydrate Polymers, 102, 808–812.

    Article  CAS  Google Scholar 

  • Zhu, Y. F., Shi, J. L., Shen, W. H., Dong, X. P., Feng, J. W., Ruan, M. L., & Li, Y. S. (2005). Stimuli-resonsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angewandte Chemie International Edition, 44, 5083–5087.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ministry of Education, Science and Technological Development of the Republic of Serbia, for support of this investigation through projects III-43009 and III-45012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra R. Nesic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesic, A.R., Kokunesoski, M.J., Volkov-Husovic, T.D. et al. New method for quantification of dye sorption using SBA mesoporous silica as a target sorbent. Environ Monit Assess 188, 160 (2016). https://doi.org/10.1007/s10661-016-5155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5155-0

Keywords

Navigation