Skip to main content

Advertisement

Log in

The effects of wildfire on mercury and stable isotopes (δ15N, δ13C) in water and biota of small boreal, acidic lakes in southern Norway

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Effects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.17–2.63 ng L−1 and 0.053–0.188 ng L−1, respectively. Both variables were positive and strongly correlated with total organic carbon (TOC), TOC-related variables (color, UV absorbance), total phosphorous, and total iron. In addition, MeHg was positively correlated with total nitrogen and chlorophyll-a. The concurrence of increased concentrations of nutrients and chlorophyll-a in the lakes, the more enriched δ15N-signatures and higher Hg levels in fish 2 years after the fire, might be a result of the wildfire. However, natural factors as year-to-year variations in thermocline depth and suboxic status in the lakes make it difficult to draw any strong conclusions about wildfire effects on Hg in the biota from our investigated lakes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, E. W., Prepas, E. E., Gabos, S., Strachan, W. M. J., & Zhang, W. (2005). Methyl mercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the Boreal Plain. Canadian Journal of Fisheries and Aquatic Sciences, 62(9), 1963–1977. doi:10.1139/f05-103.

    Article  CAS  Google Scholar 

  • Bayley, S. E., Schindler, D. W., Beaty, K. G., Parker, B. R., & Stainton, M. P. (1992a). Effects of multiple fires on nutrient yields from streams draining Boreal forest and fen watersheds: Nitrogen and phosphorus. Canadian Journal of Fisheries and Aquatic Sciences, 49(3), 584–596. doi:10.1139/f92-068.

    Article  Google Scholar 

  • Bayley, S. E., Schindler, D. W., Parker, B. R., Stainton, M. P., & Beaty, K. G. (1992b). Effects of forest fire and drought on acidity of a base-poor boreal forest stream: Similarities between climatic warming and acidic precipitation. Biogeochemistry, 17(3), 191–204. doi:10.1007/BF00004041.

    Article  CAS  Google Scholar 

  • Belzile, N., Chen, Y.-W., Gunn, J. M., Tong, J., Alarie, Y., Delonchamp, T., & Lang, C.-Y. (2006). The effect of selenium on mercury assimilation by freshwater organisms. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1–10. doi:10.1139/f05-202.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., Mason, R. P., & Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33, 951–957. doi:10.1021/es9808200.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001). Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Applied and Environmental Microbiology, 67, 51–58. doi:10.1128/AEM.67.1.51-58.2001.

    Article  CAS  Google Scholar 

  • Benoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., & Miller, C.L. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In Biogeochemistry of environmentally important trace elements. American Chemical Society. pp. 262-297.

  • Bodaly, R. A., Rudd, J. W. M., Fudge, R. J. P., & Kelly, C. A. (1993). Mercury concentrations in fish related to size of remote Canadian shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 50(5), 980–987. doi:10.1139/f93-113.

    Article  CAS  Google Scholar 

  • Borg, H., & Sundbom, M. (2014). Long-term trends of water chemistry in mountain streams in Sweden—slow recovery from acidification. Biogeosciences, 11, 173–184. doi:10.5194/bg-11-173-2014.

    Article  Google Scholar 

  • Braaten, H. F. V., de Wit, H. A., Fjeld, E., Rognerud, S., Lydersen, E., & Larssen, T. (2014). Environmental factors influencing mercury speciation in Subarctic and Boreal lakes. Science of the Total Environment, 476–477, 336–345. doi:10.1016/j.scitotenv.2014.01.030.

    Article  Google Scholar 

  • Caldwell, C.A., Canavan, C.M., & Bloom, N.S. (2000). Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir. Science of the Total Environment, 260, 125–133. doi:10.1016/S0048-9697(00)00554-4.

  • Carignan, R., D’Arcy, P., & Lamontagne, S. (2000). Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 57(2), 105–117. doi:10.1139/f00-125.

    Article  CAS  Google Scholar 

  • Clayden, M.G., Kidd, K.A., Wyn, B., Kirk, J.L., Muir, D.C., O'Driscoll, N.J. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science and Technology, 47(21), 12047–12053. doi:10.1021/es4022975.

  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.

    CAS  Google Scholar 

  • Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta, 3(2–3), 53–92. doi:10.1016/0016-7037(53)90001-5.

    Article  CAS  Google Scholar 

  • Deines, P. (1980). The isotopic composition of reduced organic carbon. In P. Fritz & J. S. Fonyes (Eds.), Handbook of environmental isotope geochemistry. Amsterdam: Elsevier Scientific Publishing Company.

    Google Scholar 

  • Dennis, I. F., Clair, T. A., Driscoll, C. T., Kamman, N., Chalmers, A., Shanley, J., Norton, S. A., & Kahl, S. (2005). Distribution patterns of mercury in lakes and rivers of northeastern North America. Ecotoxicology, 14(1–2), 113–123. doi:10.1007/s10646-004-6263-0.

    Article  CAS  Google Scholar 

  • Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., & Towse, J. E. (2009). Ultraviolet absorbance as a proxy for total dissolved mercury in streams. Environmental Pollution, 157(6), 1953–1956. doi:10.1016/j.envpol.2009.01.031.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R., & Holsapple, J. (1995). The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water, Air, and Soil Pollution, 80(1–4), 499–508. doi:10.1007/BF01189700.

    Article  CAS  Google Scholar 

  • Eklöf, K., Fölster, J., Sonesten, L., & Bishop, K. (2012). Spatial and temporal variation of THg concentrations in run-off water from 19 boreal catchments, 2000–2010. Environmental Pollution, 164, 102–109. doi:10.1016/j.envpol.2012.01.024.

    Article  Google Scholar 

  • Eriksson, H., Edberg, F., & Borg, H. (2003). Effects of forest fire and fire-fighting operations on water chemistry in Tyresta National Park, Stockholm, Sweden. Journal de Physique IV (Proceedings), 107, 427–430. doi:10.1051/jp4:20030332.

    Article  CAS  Google Scholar 

  • Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 137, 55–71. doi:10.1016/j.envpol.2004.12.031.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., Lamborg, C. H., & Hammerschmidt, C. R. (2007). Marine biogeochemical cycling of mercury. Chemical Reviews, 107, 641–662. doi:10.1021/cr050353m.

    Article  CAS  Google Scholar 

  • Fjeld, E., & Rognerud, S. (2009). Pollutants in freshwater fishes, 2008. Mercury in perch and organic pollutants in brown trout (In Norwegian with English summary), Report TA-2544/2009, 66 pp + Appendix, Oslo, Norway.

  • Foe, C., & Louie, S. (2014). Appendix A: Importance of primary and secondary production in controlling fish tissue mercury concentrations. Statewide mercury control program for reservoirs California Environmental Protection Agency, 36 pp.

  • France, R. L. (1995a). Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 52(3), 651–656. doi:10.1139/f95-065.

    Article  Google Scholar 

  • France, R. L. (1995b). Source variability in δ15N of autotrophs as a potential aid in measuring allochthony in freshwaters. Ecography, 18(3), 318–320. doi:10.1111/j.1600-0587.1995.tb00134.x.

    Article  Google Scholar 

  • Friedli, H. R., Radke, L. F., Lu, J. Y., Banic, C. M., Leaitch, W. R., & MacPherson, J. I. (2003). Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements. Atmospheric Environment, 37(2), 253–267. doi:10.1016/S1352-2310(02)00819-1.

    Article  CAS  Google Scholar 

  • Friedli, H. R., Radke, L. F., Payne, N. J., McRae, D. J., Lynham, T. J., & Blake, T. W. (2007). Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. Journal of Geophysical Research, Biogeosciences, 112(G1), G01004. doi:10.1029/2005JG000061.

    Google Scholar 

  • Fry, B., & Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science, 27, 13–47.

    CAS  Google Scholar 

  • Gabriel, M. C., Kolka, R., Wickman, T., Nater, E., & Woodruff, L. (2009). Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed–lake systems within the southern Boreal Shield. Science of the Total Environment, 407(13), 4117–4126. doi:10.1016/j.scitotenv.2009.03.019.

    Article  CAS  Google Scholar 

  • Garcia, E., & Carignan, R. (2000). Mercury concentrations in northern pike (Esox lucius) from boreal lakes with logged, burned, or undisturbed catchments. Canadian Journal of Fisheries and Aquatic Sciences, 57(2), 129–135. doi:10.1139/cjfas-57-S2-129.

    Article  CAS  Google Scholar 

  • Golding, G. R., Kelly, C. A., Sparling, R., Loewen, P. C., & Barkay, T. (2007). Evaluation of mercury toxicity as a predictor of mercury bioavailability. Environmental Science & Technology, 41(16), 5685–5692. doi:10.1021/es070138i.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: A review. Environmental Reviews, 10, 1–39. doi:10.1139/a01-013.

    Article  CAS  Google Scholar 

  • Hall, B. D., Bodaly, R. A., Fudge, R. J. P., Rudd, J. W. M., & Rosenberg, D. M. (1997). Food as the dominant pathway of methylmercury uptake by fish. Water, Air, and Soil Pollution, 100(1–2), 13–24. doi:10.1023/A:1018071406537.

    CAS  Google Scholar 

  • Hammerschmidt, C. R., & Fitzgerald, W. F. (2006). Photodecomposition of methylmercury in an arctic Alaskan lake. Environmental Science & Technology, 40(4), 1212–1216. doi:10.1021/es0513234.

    Article  CAS  Google Scholar 

  • Harris, H. H., Pickering, I. J., & George, G. N. (2003). The chemical form of mercury in fish. Science, 301, 1203. doi:10.1126/science.1085941.

    Article  CAS  Google Scholar 

  • Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist, 163(2), 192–211. doi:10.1086/381004.

    Article  Google Scholar 

  • Hoch, A. R., Reddy, M. M., & Aiken, G. R. (2000). Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochimica et Cosmochimica Acta, 64, 61–72. doi:10.1016/S0016-7037(99)00179-9.

    Article  CAS  Google Scholar 

  • Høgberget, R. (2010). Wildfire in Mykland 2008. Results from two years of chemical investigations in water. (In Norwegian with English summary). Norwegian Institute for Water Research, Report number 5979–2010, pp 44.

  • Hrenchuk, L. E., Blanchfield, P. J., Paterson, M. J., & Hintelmann, H. H. (2012). Dietary and waterborne mercury accumulation by yellow perch: A field experiment. Environmental Science & Technology, 46, 509–516. doi:10.1021/es202759q.

    Article  CAS  Google Scholar 

  • Karlsson, J., & Byström, P. (2005). Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography, 50(2), 538–543. doi:10.4319/lo.2005.50.2.0538.

    Article  CAS  Google Scholar 

  • Karlsson, J., & Säwström, C. (2009). Benthic algae support zooplankton growth during winter in a clear-water lake. Oikos, 118(4), 539–544. doi:10.1111/j.1600-0706.2008.17239.x.

    Article  Google Scholar 

  • Kelly, E. N., Schindler, D. W., St Louis, V. L., Donald, D. B., & Vladicka, K. E. (2006). Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19380–19385. doi:10.1073/pnas.0609798104.

    Article  CAS  Google Scholar 

  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. doi:10.1128/AEM.01602-06.

    Article  CAS  Google Scholar 

  • Kolka, R. K., Grigal, D. F., Verry, E. S., & Nater, E. A. (1999). Mercury and organic carbon relationships in streams draining forested upland/peatland watersheds. Journal of Environmental Quality, 28(3), 766–775. doi:10.2134/jeq1999.00472425002800030006x.

    Article  CAS  Google Scholar 

  • Korthals, E. T., & Winfrey, M. R. (1987). Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake. Applied and Environmental Microbiology, 53(10), 2397–2404.

    CAS  Google Scholar 

  • Lamontagne, S., Carignan, R., D’Arcy, P., Prairie, Y. T., & Paré, D. (2000). Element export in runoff from eastern Canadian Boreal Shield drainage basins following forest harvesting and wildfires. Canadian Journal of Fisheries and Aquatic Sciences, 57, 118–128. doi:10.1139/cjfas-57-S2-118.

    Article  CAS  Google Scholar 

  • Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. (2013). Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environmental Science & Technology, 47(23), 13385–13394. doi:10.1021/es403103t.

    Article  CAS  Google Scholar 

  • Lepak, J. M., Kinzli, K.-D., Fetherman, E. R., Pate, W. M., Hansen, A. G., Gardunio, E. I., Cathcart, C. N., Stacy, W. L., Underwood, Z. E., Brandt, M. M., Myrick, C. A., & Johnson, B. M. (2012). Manipulation of growth to reduce mercury concentrations in sport fish on a whole-system scale. Canadian Journal of Fisheries and Aquatic Sciences, 69, 122–135. doi:10.1139/f2011-136.

    Article  CAS  Google Scholar 

  • Lydersen, E., Høgberget, R., Moreno, C., Garmo, Ø., & Hagen, P. (2014). The effects of wildfire on the water chemistry of dilute, acidic lakes in southern Norway. Biogeochemistry, 119(1–3), 109–124. doi:10.1007/s10533-014-9951-8.

    Article  CAS  Google Scholar 

  • Macko, S. A., & Estep, M. L. F. (1985). Microbial alteration of stable nitrogen and carbon isotope composition of organic matter. Organic Geochemistry, 6, 787–790. doi:10.1016/0146-6380(84)90100-1.

    Article  Google Scholar 

  • Mariotti, A. (1983). Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 303(5919), 685–687. doi:10.1038/303685a0.

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale, M. C., & Oremland, R. S. (1998). Bacterial methylmercury degradation in Florida everglades peat sediment. Environmental Science & Technology, 32(17), 2556–2563. doi:10.1021/es971099l.

    Article  CAS  Google Scholar 

  • Mcdonald, D. G. (1983). The interaction of environmental calcium and low pH on the physiology of the rainbow-trout, Salmo gairdneri. I. Branchial and renal net ion and H+ fluxes. Journal of Experimental Biology, 102, 123–140.

    Google Scholar 

  • Mcdonald, D. G., Walker, R. L., & Wilkes, P. R. H. (1983). The interaction of environmental calcium and low pH on the physiology of the rainbow-trout, Salmo gairdneri. II. Branchial ionoregulatory mechanisms. Journal of Experimental Biology, 102, 141–155.

    Google Scholar 

  • McEachern, P., Prepas, E. E., Gibson, J. J., & Dinsmore, W. P. (2000). Forest fire induced impacts on phosphorus, nitrogen, and chlorophyll a concentrations in boreal subarctic lakes of northern Alberta. Canadian Journal of Fisheries and Aquatic Sciences, 55(Suppl. 2), 73–81.

    Article  Google Scholar 

  • McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L., & Thorn, K. A. (1992). Sorption of dissolved organic-carbon by hydrous aluminium and iron-oxides occurring at the confluence of Deer Creek with the Snake river, Summit County, Colorado. Environmental Science and Technology, 26, 1388–1396. doi:10.1021/es00031a017.

    Article  CAS  Google Scholar 

  • Meili, M. (1991). Mercury in boreal forest lake ecosystem. PhD thesis, Institute of limnology, Uppsala University, Uppsala.

  • Meili, M. (1992). Sources, concentrations and characteristics of organic matter in softwater lakes and streams of the Swedish forest region. Hydrobiologia, 229, 23–41. doi:10.1007/BF00006988.

    Article  CAS  Google Scholar 

  • Meili, M. (1997). Mercury in lakes and rivers. In A. Sigel, & H. Sigel (Eds.), Metal ions in biological systems: Mercury and its effects on environment and biology, pp. 21–51.

  • Meili, M., Kling, G.W., Fry, B., Bell, R.T., & Ahlgren, I. (1996). Sources and partitioning of organic matter in a pelagic microbial food web inferred from the isotopic composition (δ13C and δ15N) of zooplankton species. Archive of Hydrobiology—Advances in Limnology, 48(Aquatic Microbial Ecology), 53–61.

  • Mierle, G., & Ingram, R. (1991). The role of humic substances in the mobilization of mercury from watersheds. Water, Air, and Soil Pollution, 56, 349–357. doi:10.1007/BF00342282.

    Article  CAS  Google Scholar 

  • Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48(5), 1135–1140. doi:10.1016/0016-7037(84)90204-7.

    Article  CAS  Google Scholar 

  • Minshall, G. W., Brock, J. T., & Varley, J. D. (1989). Wildfires and Yellowstone’s Stream Ecosystems: A temporal perspective shows that aquatic recovery parallels forest succession. BioScience, 39(10), 707–715. doi:10.2307/1311002.

    Article  Google Scholar 

  • Miskimmin, B. M., Rudd, J. W. M., & Kelly, C. A. (1992). Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Canadian Journal of Fisheries and Aquatic Sciences, 49, 17–22. doi:10.1139/f92-002.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvaale, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopácek, J., & Vesely, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540. doi:10.1038/nature06316.

    Article  CAS  Google Scholar 

  • Neville, C. M. (1985). Physiological response of juvenile rainbow-trout, Salmo gairdneri, to acid and aluminum—prediction of field responses from laboratory data. Canadian Journal of Fisheries and Aquatic Sciences, 42, 2004–2019. doi:10.1139/f85-248.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Culbertson, C. W., & Winfrey, M. R. (1991). Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation. Applied and Environmental Microbiology, 57, 130–137.

    CAS  Google Scholar 

  • Owens, N. J. P. (1987). Natural variation in 15N in the marine environment. Advances in Marine Biology, 24, 390–451. doi:10.1016/S0065-2881(08)60077-2.

    Google Scholar 

  • Parker, J. L. & Bloom, N. S. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of The Total Environment, 337(1–3), 253–263. doi:10.1016/j.scitotenv.2004.07.006.

  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Wall, J. D., Elias, D. A., & Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science, 339(6125), 1332–5. doi:10.1126/science.1230667.

  • Phillips, V. J. A., St. Louis, V. L., Cooke, C. A., Vinebrooke, R. D., & Hobbs, W. O. (2011). Increased mercury loadings to western Canadian alpine lakes over the past 150 years. Environmental Science and Technology, 45, 2042–2047. doi:10.1021/es1031135.

  • Pickhardt, P. C., & Fisher, N. S. (2007). Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environmental Science and Technology, 41, 125–131. doi:10.1021/es060966w.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., Folt, C. L., Chen, C. Y., Klaue, B., & Blum, J. D. (2002). Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4419–4423. doi:10.1073/pnas.072531099.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., Folt, C. L., Chen, C. Y., Klaue, B., & Blum, J. D. (2005). Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Science of the Total Environment, 339(1–3), 89–101. doi:10.1016/j.scitotenv.2004.07.025.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., Stepanova, M., & Fisher, N. S. (2006). Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environmental Toxicology and Chemistry, 25(8), 2132–2142. doi:10.1897/05-595R.1.

    Article  CAS  Google Scholar 

  • Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology, 83(3), 703–718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2.

    Article  Google Scholar 

  • Ramalhosa, E., Segade, S. R., Pereira, E., Vale, C., & Duarte, A. (2006). Mercury cycling between the water column and surface sediments in a contaminated area. Water Research, 40(15), 2893–2900. doi:10.1016/j.watres.2006.05.023.

    Article  CAS  Google Scholar 

  • Rasmussen, J. B., Godbout, L., & Schallenberg, M. (1989). The humic content of lake water and its relationship to watershed and lake morphometry. Limnology and Oceanography, 34(7), 1336–1343. doi:10.4319/lo.1989.34.7.1336.

    Article  CAS  Google Scholar 

  • Rau, G. H. (1978). Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science, 201(4359), 901–902. doi:10.1126/science.201.4359.901.

    Article  CAS  Google Scholar 

  • Rau, G. H. (1980). Carbon-13/Carbon-12 variation in subalpine lake aquatic insects: Food source implications. Canadian Journal of Fisheries and Aquatic Sciences, 37(4), 742–746. doi:10.1139/f80-098.

    Article  CAS  Google Scholar 

  • Rothenberg, S.E., Kirby, M.E., Bird, B.W., DeRose, M.B., Lin, C-C., Feng, X., Ambrose, R.F., & Jay, J.A. (2010). The impact of over 100 years of wildfires on mercury levels and accumulation rates in two lakes in southern California, USA. Environmental Earth Sciences, 60, 993–1005. doi:10.1007/s12665-009-0238-7.

  • Schartau, A.K., Fjellheim, A., & Walseng, B.e.a. (2012). Monitoring long-range transboundary air and precipitation pollution. Annual Report - Effects 2011 (In Norwegian with English summary). The Norwegian Climate and Pollution Agency. TA-2934/2012, 160 pp.

  • Schindler, D. W., Newbury, R. W., Beaty, K. G., Prokopowich, J., Ruszczynski, T., & Dalton, J. A. (1980). Effects of a windstorm and forest fire on chemical losses from forested watersheds and on the quality of receiving streams. Canadian Journal of Fisheries and Aquatic Sciences, 37(3), 328–334. doi:10.1139/f80-046.

    Article  CAS  Google Scholar 

  • Sellers, P., Kelly, C. A., Rudd, J. W., & MacHutchon, A. R. (1996). Photodegradation of methylmercury in lakes. Nature, 380, 694–697. doi:10.1038/380694a0.

    Article  CAS  Google Scholar 

  • Sellers, P., Kelly, C. A., & Rudd, J. W. M. (2001). Fluxes of methylmercury to the water column of a drainage lake: The relative importance of internal and external sources. Limnology and Oceanography, 46(3), 623–631.

    Article  CAS  Google Scholar 

  • Sigler, J. M., Lee, X., & Munger, W. (2003). Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environmental Science & Technology, 37(19), 4343–4347. doi:10.1021/es026401r.

    Article  CAS  Google Scholar 

  • Silins, U., Bladon, K. D., Kelly, E. N., Esch, E., Spence, J. R., Stone, M., Emelko, M. B., Boon, S., Wagner, M. J., Williams, C. H. S., & Tichkowsky, I. (2014). Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity. Ecohydrology, 7(6), 1508–1523. doi:10.1002/eco.1474.

    Article  Google Scholar 

  • Simoneau, M., Lucotte, M., Garceau, S., & Laliberte, D. (2005). Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environmental Research, 98, 73–82. doi:10.1016/j.envres.2004.08.002.

    Article  CAS  Google Scholar 

  • Skyllberg, U. (2010). Chapter 13—mercury biogeochemistry in soils and sediments. Developments in Soil Science, 34, 379–410. doi:10.1016/S0166-2481(10)34013-X.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Qian, J., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53–76. doi:10.1023/A:1024904502633.

    Article  CAS  Google Scholar 

  • Spencer, C. N., Gabel, K. O., & Hauer, F. R. (2003). Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. Forest Ecology and Management, 178(1–2), 141–153. doi:10.1016/s0378-1127(03)00058-6.

    Article  Google Scholar 

  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Flett, R. J., & Roulet, N. T. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science & Technology, 30(9), 2719–2729. doi:10.1021/es950856h.

    Article  CAS  Google Scholar 

  • Stephan, K. (2007). Wildfire and prescribed burning effects on nitrogen dynamics in central Idaho headwater ecosystems. PhD thesis, University of Idaho, USA.

  • Stewart, A. R., Saiki, M. K., Kuwabara, J. S., Alpers, C. N., Marvin-DiPasquale, M., & Krabbenhoft, D. P. (2008). Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir. Canadian Journal of Fisheries and Aquatic Sciences, 65(11), 2351–2366. doi:10.1139/f08-140.

    Article  CAS  Google Scholar 

  • Trudel, M., & Rasmussen, J. B. (1997). Modeling the elimination of mercury by fish. Environmental Science & Technology, 31(6), 1716–1722. doi:10.1021/es960609t.

    Article  CAS  Google Scholar 

  • Turetsky, M. R., Harden, J. W., Friedli, H. R., Flannigan, M., Payne, N., Crock, J., & Radke, L. (2006). Wildfires threaten mercury stocks in northern soils. Geophysical Research Letters, 33(16), L16403. doi:10.1029/2005GL025595.

    Article  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. doi:10.1080/20016491089226.

    Article  CAS  Google Scholar 

  • UNEP. (2013). Global Mercury Assessment 2013: Sources, emissions, releases and environmental transport. Geneva: UNEP Chemicals Branch.

    Google Scholar 

  • USEPA (2002). Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. US Environmental Protection Agency, Office of Water 4303, EPA-821-R-02-019.

  • USEPA (1998) Method 1630. Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. US Environmental Protection Agency, Office of Water, draft.

  • Vander Zanden, M. J., & Rasmussen, J. B. (1999). Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology, 80(4), 1395–1404. doi:10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2.

    Article  Google Scholar 

  • Vander Zanden, M. J., & Vadeboncoeur, Y. (2002). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83(8), 2152–2161. doi:10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2.

    Article  Google Scholar 

  • Verta, M. (1990). Changes in fish mercury concentrations in an intensively fished lake. Canadian Journal of Fisheries and Aquatic Sciences, 47(10), 1888–1897. doi:10.1139/f90-213.

    Article  CAS  Google Scholar 

  • Verta, M., Salo, S., Korhonen, M., Porvari, P., Paloheimo, A., & Munthe, J. (2010). Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes. Science of the Total Environment, 408(17), 3639–3647. doi:10.1016/j.scitotenv.2010.05.006.

    Article  CAS  Google Scholar 

  • Wada, E., & Hattori, A. (1978). Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiology Journal, 1, 85–101. doi:10.1080/01490457809377725.

    Article  CAS  Google Scholar 

  • Ward, D. M., Nislow, K. H., & Folt, C. L. (2010). Bioaccumulation syndrome: Identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Annals of the New York Academy of Sciences, 1195, 62–83. doi:10.1111/j.1749-6632.2010.05456.x.

    Article  CAS  Google Scholar 

  • Watras, C. J., & Bloom, N. S. (1992). Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography, 37(6), 1313–1318. doi:10.4319/lo.1992.37.6.1313.

    Article  Google Scholar 

  • Watras, C. J., Morrison, K. A., Host, J. S., & Bloom, N. S. (1995a). Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes. Limnology and Oceanography, 40(3), 556–565.

    Article  CAS  Google Scholar 

  • Watras, C. J., Bloom, N. S., Claas, S. A., Morrison, K. A., Gilmour, C. C., & Graig, S. R. (1995b). Methylmercury production in the anoxic hypolimnion of a dimictic seepage lake. Water, Air, and Soil Pollution, 80, 735–745.

    Article  CAS  Google Scholar 

  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20), 4702–4708. doi:10.1021/es030360x.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. (1975). The phosphorus cycle. In Limnology: Lake and river ecosystems. Academic, pp. 246–286.

  • Wiedinmyer, C., & Friedli, H. (2007). Mercury emission estimates from fires: An initial inventory for the United States. Environmental Science & Technology, 41(23), 8092–8098. doi:10.1021/es071289o.

    Article  CAS  Google Scholar 

  • Winch, S., Praharaj, T., Fortin, D., & Lean, D. R. (2008). Factors affecting methylmercury distribution in surficial, acidic, base-metal mine tailings. Science of the Total Environment, 392(2–3), 242–251. doi:10.1016/j.scitotenv.2007.12.008.

    Article  CAS  Google Scholar 

  • Yoshinaga, J., Suzuki, T., Hongo, T., Minagawa, M., Ohtsuka, R., Kawabe, T., Inaoka, T., & Akimichi, T. (1992). Mercury concentration correlates with the nitrogen stable isotope ratio in the animal food of Papuans. Ecotoxicology and Environmental Safety, 24, 37–45. doi:10.1016/0147-6513(92)90033-Y.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of a forest fire project (Pyrowater) funded by the Norwegian Research Council (NRC) during the period 2009–2012. We greatly appreciate the Norwegian Water Research Institute (NIVA), for funding and initiating water chemical investigations and fish sampling during the very essential, initial post-fire period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara E. Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 28 kb)

ESM 2

(DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, C.E., Fjeld, E. & Lydersen, E. The effects of wildfire on mercury and stable isotopes (δ15N, δ13C) in water and biota of small boreal, acidic lakes in southern Norway. Environ Monit Assess 188, 178 (2016). https://doi.org/10.1007/s10661-016-5148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5148-z

Keywords

Navigation