Skip to main content

Advertisement

Log in

Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad, R., & Rahman, A. (2009). Sorption characteristics of atrazine and imazethapyr in soils of New Zealand: importance of independently determined sorption data. Journal of Agricultural and Food Chemistry, 57, 10866–10875.

    Article  CAS  Google Scholar 

  • Bichat, F., Sims, G. K., & Mulvaney, R. L. (1999). Microbial utilization of heterocyclic nitrogen from atrazine. Soil Science Society of America Journal, 63, 100–110.

    Article  CAS  Google Scholar 

  • Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., & Clark, F. E. (1965). Methods of soil analysis. 2nd ed. Agronomy Monograph 9, Agronomy Society of America and Soil Science Society of America, Madison.

  • Cellis, R., Cornjeo, J., Hermosin, A., & Koskinen, W. C. (1997). Sorption-desorption of atrazine and simazine by model soil colloidal components. Soil Science Society of America Journal, 61, 436–443.

    Article  Google Scholar 

  • Chatterjee, S., Chattopadhyay, P., Roy, S., & Sen, S. K. (2008). Bioremediation: a tool for cleaning up polluted environments. Journal of Applied Biosciences, 11, 594–601.

    Google Scholar 

  • Clausen, G. B., Larsen, L., Johnsen, K., Lipthay, J. R., & Aamand, J. (2002). Quantification of the atrazine degrading Pseudomonas sp. strain ADP in aquifer sediment by quantitative competitive polymerase chain reaction. FEMS Microbiology Ecology, 41, 211–229.

    Article  Google Scholar 

  • Clay, S. A., & Koskinen, W. C. (1990). Adsorption and desorption of atrazine, hydroxyatrazine, and s-glutathione atrazine in two soils. Weed Science, 38, 262–266.

    CAS  Google Scholar 

  • De Souza, M., Seffernick, J., Mmartinez, B., Sadowsky, M. J., & Wackett, L. P. (1998). The atrazine catabolism genes atzABC are widespread and highly conserved. Journal of Bacteriology, 180, 1951–1954.

    Google Scholar 

  • Dehghani, M., Nasseri, S., & Hashemi, H. (2013). Study of the bioremediation of atrazine under variable carbon and nitrogen sources by mixed bacterial consortium isolated from corn field soil in Fars province of Iran. Journal of Environmental and Public Health, 2013, 973165. doi:10.1155/2013/973165.

    Google Scholar 

  • Dutta, A., & Singh, N. (2013). Degradation of atrazine in mineral salts medium and soil using enrichment culture. Journal of Environmental Science and Health. Part. B, 48, 860–868.

    Article  CAS  Google Scholar 

  • Dutta, A., Vasudevan, V., Nain, L., & Singh, N. (2015). Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater. Journal of Environmental Science and Health. Part. B, 51, 24–34.

    Article  Google Scholar 

  • Garcia-Gonzalez, V., Govantes, F., Shaw, L. J., Burns, R. G., & Santero, E. (2003). Nitrogen control of atrazine utilization in Pseudomonas sp. strain ADP. Applied and Environmental Microbiology, 69, 6987–6993.

    Article  CAS  Google Scholar 

  • Govantes, F., Porrúa, O., García-González, V., & Santero, E. (2009). Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microbial Biotechnology, 2, 178–185.

    Article  CAS  Google Scholar 

  • Guo, L., Jury, W. A., Wagenet, R. J., & Flury, M. (2000). Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. Journal of Contaminant Hydrology, 43, 45–62.

    Article  CAS  Google Scholar 

  • Guox, S., Shapir, N., Fantroussi, N., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air, & Soil Pollution: Focus, 3, 131–142.

    Article  Google Scholar 

  • Holford, I. C. R., Haigh, B. M., & Ferris, I. G. (1989). Atrazine persistence and phytotoxicity on wheat as affected by nitrogen and rotation-induced changes in soil properties. Australian Journal of Agricultural Research, 40, 1143–1153.

    Article  CAS  Google Scholar 

  • Houot, S., Barriuso, E., & Bergheaud, V. (1998). Modifications to atrazine degradation pathways in a loamy soil after addition of organic amendments. Soil Biology and Biochemistry, 30, 2147–2157.

    Article  CAS  Google Scholar 

  • Hu, D., Henderson, K., & Coats, J. (2009). Fate of transformation products of synthetic chemicals. In: Boxall, A. B. A. (ed), Transformation products of synthetic chemicals in the environment. The Handbook of Environmental Chemistry, vol. 2, Part P. Berlin (pp. 103–120). Germany: Springer-Verlag.

  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall Inc.

    Google Scholar 

  • Liu, Z., Clay, S. A., Clay, D. E., & Harper, S. S. (1995). Ammonia fertilizers affect atrazine adsorption–desorption characteristics. Journal of Agricultural and Food Chemistry, 43, 815–819.

    Article  CAS  Google Scholar 

  • Martinez, B., Tomkins, J., Wackett, L. P., Wing, R., & Sadowsky, M. J. (2001). Complete nucleotide sequence and organization of atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. Journal of Bacteriology, 183, 5684–5697.

    Article  CAS  Google Scholar 

  • Obien, S. R., & Green, R. E. (1969). Degradation of atrazine in four Hawaiian soils. Weed Science, 17, 509–514.

    CAS  Google Scholar 

  • Sadowsky, M. J. Z., Tong, M. L., de Souza, M., & Wackett, L. P. (1998). AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. Journal of Bacteriology, 180, 152–158.

    CAS  Google Scholar 

  • Solomon, R. D. J., Kumar, A., & Satheeja, S. V. (2013). Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil. Journal of Zhejiang University. Science, B4, 1162–1172.

    Article  Google Scholar 

  • Sparling, G., Dragten, R., Aislabie, J., & Fraser, R. (1998). Atrazine mineralization in New Zealand topsoils and subsoils: influence of edaphic factors and numbers of atrazine-degrading microbes. Australian Journal of Soil Research, 36, 557–570.

    Article  CAS  Google Scholar 

  • Stutz, H., Pittertschatscher, K., & Malissa, H. (1998). Capillary zone electrophoretic determination of hydroxymetabolites of atrazine in potable water using solid-phase extraction with Amberchrom resins. Mikrochimica Acta, 128, 107–117.

    Article  CAS  Google Scholar 

  • Swarcewicz, M., & Skoersk, E. (2007). Adsorption of atrazine by soils varying in organic carbon content in the presence of the adjuvant atpolan. Bulletin of Environmental Contamination and Toxicology, 78, 231–234.

    Article  CAS  Google Scholar 

  • Topp, E., Mulbry, W. M., Zhu, H., Nour, S. M., & Cuppels, D. (2000). Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Applied and Environmental Microbiology, 66, 3134–3141.

    Article  CAS  Google Scholar 

  • Wang, P., & Keller, A. A. (2009). Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions. Water Research, 43, 1448–1456.

    Article  CAS  Google Scholar 

  • Wang, J., Zhu, L., Wang, Q., Wang, J., & Xie, H. (2014). Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6. PLoS ONE, 9, e107270. doi:10.1371/journal.pone.0107270.

    Article  Google Scholar 

  • Zhang, Y., Cao, B., Jiang, Z., Dong, X., Hu, M., & Wang, Z. (2012). Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5. Journal of Hazardous Materials, 237–238, 376–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Singh.

Ethics declarations

The authors declare that they have no conflict of interest. Consent to publish the work from co-author and the responsible authority of institution, where work was carried out, has been obtained. Research does not involve humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, N. Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture. Environ Monit Assess 188, 142 (2016). https://doi.org/10.1007/s10661-016-5144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5144-3

Keywords