Skip to main content
Log in

Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Three Gorges Dam (TGD) has greatly altered ecological and environmental conditions within the reservoir region, but it is not known how these changes affect phytoplankton structure and dynamics. Here, a bimonthly monitoring program was implemented from 2007 to 2009 to study the impact of damming on phytoplankton assemblages in the backwater area of the Pengxi River (PBA). By application of the phytoplankton functional group (C strategists, competitive species; S strategists, stress-tolerant species; R strategists, rapid propagation species), seasonal changes in phytoplankton relative to environmental variations were evaluated using ordination analysis. Seasonal patterns of phytoplankton dynamics were detected during this study, with CS/S strategists causing algal blooms from mid-spring to early summer, CS/CR strategists often observed during flood season, and CS strategists dominant during mid-autumn. CR/R groups dominated during winter and caused algal blooms in February. Our results indicated that phytoplankton assemblages were directly related to reservoir operation effects. Generally, the TGD had a low water level during flood season, resulting in a relatively short hydraulic retention time and intensive variability, which supported the cooccurrence of CS and CR species. During the winter drought season, water storage in the TGD increased the water level and the hydraulic retention time in the PBA, enabling R/CR strategists to overcome the sedimentation effect and to out-compete S/CS species in winter. As expected, these diversity patterns were significantly correlated with the hydraulic retention time and nutrient limitation pattern in the PBA. This study provides strategic insight for evaluating the impacts of reservoir operations on phytoplankton adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves-de-Souza, C., González, M. T., & Iriarte, J. L. (2008). Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research, 30, 1233–1243.

    Article  CAS  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington D.C: American Public Health Association.

    Google Scholar 

  • Bachmann, R. W., Hoyer, M. V., & Canfield, D. E., Jr. (1999). The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia, 394, 219–232.

    Article  CAS  Google Scholar 

  • Baek, S. H., Shimode, S., Han, M. S., & Kikuchi, T. (2008). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients. Harmful Algae, 7(6), 729–739.

    Article  CAS  Google Scholar 

  • Becker, V., Huszar, V. L., Naselli-Flores, L., & Padisák, J. (2008). Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology, 53, 952–963.

    Article  Google Scholar 

  • Becker, V., Cardoso, L. D., & Huszar, V. L. M. (2009a). Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil during an autumnal stratification period. Aquatic Ecology, 43, 285–293.

    Article  Google Scholar 

  • Becker, V., Huszar, V. L. M., & Crossetti, L. O. (2009b). Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 628, 137–151.

    Article  Google Scholar 

  • Bowling, L. C., Merrick, C., Swann, J., Green, D., Smith, G., & Neilan, B. A. (2013). Effects of hydrology and river management on the distribution, abundance and persistence of cyanobacterial blooms in the Murray River, Australia. Harmful Algae, 30, 27–36.

    Article  Google Scholar 

  • Brian, A. W., & Malcolm, P. (2002). The ecology of cyanobacteria: their diversity in time and space. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Brunner, G. W. (2008). HEC-RAS, river analysis systems hydraulic reference manual version 4.0 [R]. CA: US Army Corps of Engineers Hydrologic Engineering Center (HEC).

  • Burford, M. A., & O’donohue, M. J. (2006). A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology, 51, 973–982.

    Article  CAS  Google Scholar 

  • Cao, C. J., Zheng, B. H., Chen, Z. L., Huang, M. S., & Zhang, J. L. (2011). Eutrophication and algal blooms in channel type reservoirs: a novel enclosure experiment by changing light intensity. Journal of Environmental Sciences-China, 23, 1660–1670.

    Article  CAS  Google Scholar 

  • Caputo, L., Naselli-Flores, L., Ordoñez, J., & Armengol, J. (2008). Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshwater Biology, 53, 2543–2556.

    Article  CAS  Google Scholar 

  • Cardoso, L. S., Fragoso, C. R., Jr., Souza, R. S., & Marques, D. M. (2012). Hydrodynamic control of plankton spatial and temporal heterogeneity in subtropical shallow lakes. In H. E. Schulz, A. L. A. Simões, & R. J. Lobosco (Eds.), Hydrodynamics—natural water bodies (pp. 27–48). Rijeka: Intech Open Access Publisher.

    Google Scholar 

  • Carrick, H. L., Aldridge, F. J., & Schelske, C. L. (1993). Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography, 38, 1179–1192.

    Article  Google Scholar 

  • Chung, S. W., Imberger, J., Hipsey, M. R., & Lee, H. S. (2014). The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir. Ecological Modelling, 289, 133–149.

    Article  Google Scholar 

  • Devercelli, M. (2006). Phytoplankton of the Middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia, 563, 465–478.

    Article  Google Scholar 

  • Domingues, R. B., Sobrino, C., & Galvao, H. (2007). Impact of reservoir filling on phytoplankton succession and cyanobacteria blooms in a temperate estuary. Estuarine, Coastal and Shelf Science, 74, 31–43.

    Article  Google Scholar 

  • Domingues, R. B., Barbosa, A. B., Sommer, U., & Galvao, H. M. (2012). Phytoplankton composition, growth and production in the Guadiana estuary (SW Iberia): Unraveling changes induced after dam construction. Science of the Total Environment, 416, 300–313.

    Article  CAS  Google Scholar 

  • Dubnyak, S., & Timchenko, V. (2000). Ecological role of hydrodynamic processes in the Dnieper reservoirs. Ecological Engineering, 16, 181–188.

    Article  Google Scholar 

  • Fonseca, B. M., & Bicudo, C. E. D. (2011). Phytoplankton seasonal and vertical variations in a tropical shallow reservoir with abundant macrophytes (Ninf, ias Pond, Brazil). Hydrobiologia, 665, 229–245.

    Article  CAS  Google Scholar 

  • Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1194.

    Article  Google Scholar 

  • Grime, J. P. (1979). Plant strategies and vegetation processes. UK: John Wiley.

    Google Scholar 

  • Grime, J. P. (2001). Plant strategies, vegetation processes, and ecosystem properties (2nd ed.). UK: John Wiley.

    Google Scholar 

  • Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography, 45, 1213–1223.

    Article  CAS  Google Scholar 

  • Hawkes, H. A. (1979). Invertebrates as indicators of river quality. In A. James & L. Evison (Eds.), Biological indicators of water quality (pp. 1–45). UK: John Wiley.

    Google Scholar 

  • Hubble, D. S., & Harper, D. M. (2002). Phytoplankton community structure and succession in the water column of Lake Naivasha, Kenya: a shallow tropical lake. Hydrobiologia, 488, 89–98.

    Article  Google Scholar 

  • Istvánovics, V., Honti, M., Vörös, L., & Kozma, Z. (2010). Phytoplankton dynamics in relation to connectivity, flow dynamics and resource availability—the case of a large, lowland river, the Hungarian Tisza. Hydrobiologia, 637, 121–141.

    Article  Google Scholar 

  • Jeong, K. S., Kim, D. K., & Joo, G. J. (2007). Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research, 41(6), 1269–1279.

    Article  CAS  Google Scholar 

  • Jones, I. D., & Elliott, J. A. (2007). Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshwater Biology, 52, 988–997.

    Article  Google Scholar 

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. UK: Cambridge University Press.

    Google Scholar 

  • Li, Z., Guo, J. S., Fang, F., Chen, J., Zhang, C., & Tian, G. (2009). Seasonal variation of nitrogen in Xiaojiang backwater area, Three Gorges Reservoir. Environmental Science, 30(6), 1588–1594.

    Google Scholar 

  • Li, Z., Wang, S., Guo, J. S., Fang, F., Gao, X., & Long, M. (2012). Responses of phytoplankton diversity to physical disturbance under manual operation in a large reservoir, China. Hydrobiologia, 684, 45–56.

    Article  Google Scholar 

  • Litchman, E., Steiner, D., & Bossard, P. (2003). Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology, 48, 2141–2148.

    Article  CAS  Google Scholar 

  • Litchman, E., de Tazanos Pinto, P., Klausmeier, C. A., Thomas, M. K., & Yoshiyama, K. (2010). Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia, 653, 15–28.

    Article  CAS  Google Scholar 

  • Liu, L., Liu, D., Johnson, D. M., Yi, Z. Q., & Huang, Y. L. (2012). Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: Implications for management. Water Research, 46, 2121–2130.

    Article  CAS  Google Scholar 

  • Long, T. Y., Wu, L., Liu, L. M., & Li, C. M. (2009a). Simulation of dissolved nitrogen pollution in Xiaojiang river basin of Three Gorges reservoir. Journal of Chongqing University, 32, 1181–1186 (In Chinese).

    CAS  Google Scholar 

  • Long, T. Y., Wu, L., Liu, L. M., & Li, C. M. (2009b). The simulation of adsorbed phosphorus pollution load based on GIS and the theory of blind number in Xiaojiang River Watershed. Journal of Agro-Environment Science, 28, 1880–1887 (In Chinese).

    CAS  Google Scholar 

  • Naselli-Flores, L., & Barone, R. (2000). Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia, 438, 65–74.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., Padisák, J., & Albay, M. (2007). Shape and size in phytoplankton ecology: do they matter? Hydrobiologia, 578, 157–161.

    Article  Google Scholar 

  • OECD. (1982). Eutrophication of waters: monitoring, assessment and control. Paris: Organisation for Economic and Cooperative Development.

    Google Scholar 

  • Padisák, J., & Reynolds, C. S. (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia, 384, 41–53.

    Article  Google Scholar 

  • Reynolds, C. S. (1980). Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology, 3, 141–159.

    Google Scholar 

  • Reynolds, C. S. (1984). Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwater Biology, 14, 111–142.

    Article  Google Scholar 

  • Reynolds, C. S. (1997). Vegetation process in the pelagic: a model for ecosystem theory. Oldendorf: Ecology Institute.

    Google Scholar 

  • Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia, 369(370), 11–26.

    Article  Google Scholar 

  • Reynolds, C. S. (1999). Phytoplankton assemblages in reservoirs. In J. G. Tundisi & M. Straskraba (Eds.), Theoretical reservoir ecology and its applications (pp. 439–456). Leiden: Backhuys.

    Google Scholar 

  • Reynolds, C. S. (2006). The ecology of phytoplankton. UK: Cambridge University Press.

    Book  Google Scholar 

  • Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–28.

    Article  Google Scholar 

  • Rott, E. (1981). Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift fur Hydrologie-Swiss Journal of Hydrology, 43, 34–62.

    Google Scholar 

  • Salmaso, N., & Padisák, J. (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 578, 97–112.

    Article  Google Scholar 

  • Smayda, T. J., & Reynolds, C. S. (2001). Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research, 23, 447–461.

    Article  Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10, 126–139.

    Article  CAS  Google Scholar 

  • Smith, V. H. (2009). Eutrophication. In G. E. Likens (Ed.), Encyclopedia of inland waters (pp. 61–73). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Stone, R. (2008). Three Gorges Dam: into the unknown. Science, 321, 628–632.

    Article  CAS  Google Scholar 

  • Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25, 1331–1346.

    Article  Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 9, 1–39.

    Google Scholar 

  • Venrick, E. L. (1978). How many cells to count? In A. Sournia (Ed.), Phytoplankton Manual (pp. 167–180). Paris: Unesco.

    Google Scholar 

  • Wang, L., Cai, Q. H., Tan, L., & Kong, L. H. (2011). Phytoplankton development and ecological status during a cyanobacterial bloom in a tributary bay of the Three Gorges Reservoir, China. Science of the Total Environment, 409, 3820–3828.

    Article  CAS  Google Scholar 

  • Weithoff, G. (2003). The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology, 48, 1669–1675.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology (3rd ed.). California: Academic Press.

    Google Scholar 

  • Wu, L., Long, T. Y., & Li, C. M. (2010). The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area. Water Science and Technology, 61, 1601–1616.

    Article  CAS  Google Scholar 

  • Wulffa, F., Eyreb, B. D., & Johnstone, R. (2011). Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): Implications for management. Ecological Modelling, 222, 120–130.

    Article  Google Scholar 

  • Zeng, H., Song, L. R., Yu, Z. G., & Chen, H. T. (2006). Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons. Science of the Total Environment, 367, 999–1009.

    Article  CAS  Google Scholar 

  • Zheng, B., Zhang, Y., Fu, G., & Liu, H. (2006). On the assessment standards for nutrition status in the Three Gorge Reservoir. Acta Scientiae Circumstantiae, 26(6), 1022–1030.

    CAS  Google Scholar 

  • Zhu, K. X., Bi, Y. H., & Hu, Z. Y. (2013). Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China. Science of the Total Environment, 450–451, 169–177.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation (Program No. 51179215, 51309220). The authors are also grateful for the Western Action Research Program grant from the Chinese Academy of Science (KZCX2-XB3-14) and funding provided by the Chongqing Natural Science Program (CSTC2012JJB20004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li.

Appendix

Appendix

Table 4 Lists of phytoplankton species in the Pengxi backwater area (May 2007–April 2009)
Table 5 Abbreviations of selected phytoplankton genera found at five sampling locations in the PBA from 2007 to 2009 during the 2-year survey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Li, Z., Guo, J. et al. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China. Environ Monit Assess 188, 153 (2016). https://doi.org/10.1007/s10661-016-5132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5132-7

Keywords

Navigation