Advertisement

Bacterial pollution, activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey

  • Pelin S. Çiftçi TüretkenEmail author
  • Gülşen Altuğ
Article

Abstract

Isolation and characterization studies of marine heterotrophic bacteria are important to describe and understand eco-metobolism of the marine environments. In this study, diversity and community structures of the culturable heterotrophic bacteria, metabollicaly active bacteria and bacterial pollution in the coastal and offshore areas of Gökçeada Island, in the Northern Aegean Sea, Turkey were investigated from March 2012 to November 2013. The primary hydrographic parameters were recorded in situ. The frequency of the metabolically active bacteria was determined by using a modified staining technique. The indicator bacteria were determined by using membrane filtration technique; 126 bacteria isolates, 24 of them first records for this region, were identified using an automated micro-identification system, VITEK2 Compact30. The results showed that detected bacterial community profiles were significantly different when compared with previous studies conducted in polluted marine areas of Turkey. High frequency of faecal bacteria detected at station 2 indicated that increasing human activities and terrestrial pollution sources are shaping factors for possible risks, regarding recreational uses of this region, in the summer seasons.

Keywords

Bacterial pollution Bacterial diversity Gokceada Island Aegean Sea 

Notes

Acknowledgments

This work was supported by Research Fund of the Istanbul University as a PhD thesis project (project no. 17653). The authors also thank Dr. Onur GÖNÜLAL and S. Ozan GÜREŞEN (M.Sc) for their help in sampling.

References

  1. Altuğ, G., & Bayrak, Y. (2003a). The contribution of capsulated bacteria to the total bacterial community in the water column of the Northern Marmara Sea, Küçükçekmece Lagoon and Strait of Istanbul, Turkey. Turkish Journal Marine Sciences, 9(2), 111–20.Google Scholar
  2. Altuğ, G., & Bayrak, Y. (2003b). The comparison of bacterial level in different aquatic environments by using microscopic and cultural methods (pp. 119–29). Turkey: International Symposium of Fisheries and Zoology Istanbul.Google Scholar
  3. Altuğ G., Erk H. (2001) Level of Coliform, Esherichia coli, Salmonella spp and Cu, Pb, Cd, Zn, Hg on the Coastline of Gökçeada in Water Body and Some Organisms. Ulusal Ege Adaları Toplantısı Bildiriler Kitabı, ÖZTÜRK, B., AYSEL, V. Ed., TÜDAV no. 7, 142–150.Google Scholar
  4. Altuğ G., Aktan-Turan Y., Oral M., Topaloğlu B., Dede A., Keskin Ç., İşinibilir M., Çardak M., Çiftçi P.S., Tonay M.A. (2007) Evaluation of biological diversity related to physical, chemical and biological data of the Northern Aegean Sea and Southern Marmara Sea. The Scientific and Technical Research Council of Turkey 105Y039 Technical Report. Google Scholar
  5. Altuğ G., Çardak M., Gürün S., Çiftçi P.S., Saad A.A., Ibrahim A., Fakhri M. (2010) Biodiversity of culturable aerobic heterotrophic bacteria in the coastal areas of Syria, Lebanon and the offshore areas of the Northern Aegean Sea and the Mediterranean. INOC-Tischreen University, International conference on Biodiversity of the Aquatic Environment, 115–124.Google Scholar
  6. Altuğ, G., Aktan, Y., Oral, M., Topaloğlu, B., Dede, A., Keskin, Ç., İşinibilir, M., Çardak, M., & Çiftçi, P. S. (2011). Biodiversity of the northern Aegean Sea and southern part of the Sea of Marmara, Turkey. Marine Biodiversity Records, 4, 1–17.CrossRefGoogle Scholar
  7. Altuğ, G., Gurun, S., Cardak, M., Ciftci, P. S., & Kalkan, S. (2012a). The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Mar Environ Res, 81, 35–42.CrossRefGoogle Scholar
  8. Altuğ, G., Çiftçi, P. S., Gürün, S., Kalkan, S., & Topaloğlu, B. (2012b). Screening of potential anti-bacterial activity of marine sponge extracts from Gökçeada Island, Aegean Sea, Turkey. First National Workshop on Marine Biotechnology and Genomics, Turkey, 36, 39–53.Google Scholar
  9. Altuğ, G., Çardak, M., Çiftçi, P. S., & Gürün, S. (2013a). First records and micro-geographical variations of culturable heterotrophic bacteria in an inner sea (the Sea of Marmara) between the Mediterranean and the Black Sea, Turkey. Turk J Biol, 37, 184–90.Google Scholar
  10. Altuğ G., Balkıs N., Çardak M., Gürün S., Çiftçi Türetken P.S., Kalkan S., Hulyar O. (2013b) The investigation of Güllük Bay ecosystem using by bacteriologıcal analyses. The Scientific and Technological Research Council of Turkey. TUBITAK 105Y039 Technical Report. Google Scholar
  11. American Public Health Association. (1998). Standard methods for the examination of water and wastewater. In L. S. Clesceri, A. E. Greenberg, & A. D. Eaton (Eds.), American Public Health Association, American Water Works Association and Water Environment Federation (20th ed.). Washington, D.CGoogle Scholar
  12. American Public Health Association. (2000). Standard methods for the examination of water and wastewater. In L. S. Clesceri, A. E. Greenberg, & A. D. Eaton (Eds.), American Public Health Association, American Water Works Association and Water Environment Federation (20th ed.). Washington, DC: American Public Health Association.Google Scholar
  13. Ashbolt, N. J., Grabow, W. O. K., & Snozzi, M. (2001). Indicators of microbial water quality. In World Health Organization (WHO), L. Fewtrell, & J. Bartram (Eds.), Water quality: guidelines, standards and health, Fewtrell. London, UK: IWA. 1 900222 28 0.Google Scholar
  14. Aslan Yılmaz A. (2008) Identification and quantification of aerobic heterotrophic bacteria in the Black and Marmara Seas. PhD thesis, Istanbul University, Institute of Marine Sciences and Management.Google Scholar
  15. Austin, B. (1988). Marine microbiology. Cambridge: Cambridge University Press. 0 521 32252 9.Google Scholar
  16. Bianchi, M., Perfettini, J., & Bianchi, A. (1992). Marine heterotrophic bacteria associated with enrichment culture of nitrifying bacteria planned for closed aquaculture systems. Aquat Living Resour, 5, 137–44.CrossRefGoogle Scholar
  17. Boras, J. A., Vaque, D., Maynou, F., Sa, E. L., Weinbauer, M. G., & Sala, M. M. (2015). Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea. Estuar Coast Shelf Sci, 154, 102–10.CrossRefGoogle Scholar
  18. Cetecioglu, Z., Ince, B. K., Kolukırık, M., & Ince, O. (2009). Biogeographical distribution and diversty of bacterial and archaeal communities within highly polluted anoxic marine sediments from the Marmara Sea. Mar Pollut Bull, 58(3), 384–95.CrossRefGoogle Scholar
  19. Chiu, J. M. Y., Thiyagarajan, V., Pechenik, J. A., & Qian, P. Y. (2007). The influence of temperature and salinity on microbial film development and metamorphosis of the prosobranch gastropod Crepidula onyx. Mar Biol, 151, 1417–31.CrossRefGoogle Scholar
  20. Çiftçi, P. S., Gönülal, O., Altuğ, G. (2011). Indicator Bacteria Levels of Surface Water Around Gokceada Island, Proceedings of “16. Ulusal Su Ürünleri Sempozyumu”, Antalya, Turkey (pp. 237) in Turkish.Google Scholar
  21. Coyne, M. S., & Howell, J. M. (1994). The fecal coliform/fecal Streptococci ratio (FC/FS) and water quality in the Bluegrass Region of Kentucky. Soil and Science News & Views, 15, 9.Google Scholar
  22. Decho, A. W. (1990). Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev, 28, 73–153.Google Scholar
  23. Du, H., Jiao, N., Hu, Y., & Zeng, Y. (2006). Diversityand distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol, 57, 92–105.CrossRefGoogle Scholar
  24. Edlund, A., Soule, T., Sjöling, S., & Jansson, J. K. (2006). Microbial community structure in polluted Baltic Sea sediments. Environ Microbiol, 8, 223–32.CrossRefGoogle Scholar
  25. EPA. (2006) Office of Wetlands, Oceans and Watersheds, Volunteer Estuary Monitoring: a methods manual, second edition, U.S. Environmental Protection Agency.Google Scholar
  26. Ferguson, C. M., Coote, B. G., Ashbolt, N. J., & Stevenson, I. M. (1996). Relationships between indicators, pathogens and water quality in an estuarine system. Water Res, 30, 2045–54.CrossRefGoogle Scholar
  27. Ghiglione, J.-F., Larcher, M., & Lebaron, P. (2005). Spatial and temporal scales of variation in bacterioplankton community structure in the NW Mediterranean Sea. Aquat Microb Ecol, 40, 229–40.CrossRefGoogle Scholar
  28. Giovannoni, S., & Rappé, M. (2000). Evolution, diversity and molecular ecology of marine prokaryotes. In D. Kirchman (Ed.), Microbial ecology of the oceans (pp. 47–84). New York, N.Y.: Wiley-Liss.Google Scholar
  29. Hagström, Å., Pommier, T., Rohwer, F., Simu, K., Stolte, W., Svensson, D., & Zweifel, U. L. (2002). Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl Environ Microbiol, 68, 3628–33.CrossRefGoogle Scholar
  30. Heissenberger, A., Leppard, G. G., & Herndl, J. G. (1996). Relationship between the intracellular integrity and morpology of the capsular envelope in attached and free-living marine bacteria. Appl Environ Microbiol, 62, 4521–8.Google Scholar
  31. Henriques, I. S., Alves, A., Tacão, M., Almeida, A., Cunha, Â., & Correia, A. (2006). Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci, 68, 139–48.CrossRefGoogle Scholar
  32. Ibekwe, M. A., Leddy, M. B., Bold, R. M., & Graves, A. K. (2012). Bacterial community composition in low-flowing river water with different sources of pollutants. FEMS Microbiol Ecol, 79, 155–66.CrossRefGoogle Scholar
  33. Ince, K. B., Usenti, I., Eyigor, A., Oz, N. A., Kolukırık, M., & Ince, O. (2006). Analysis of methanogenic archaeal and sulfate reducing bacterial populations in the sediments of the Black Sea using FISH. J Geophys Res, 23, 1–8.Google Scholar
  34. Janelidze, N., Jaiani, E., Lashkhi, N., Tskhvediani, A., Kokashvili, T., Gvarishvili, T., Jgenti, D., Mikashavidze, E., Diasamidze, R., Narodny, S., Obiso, R., Whitehouse, C.A., Huq, A., Tediashvili, M. (2011). Microbial water quality of the Georgian coastal zone of the Black Sea. Mar Pollut Bull, 62, 573–580.Google Scholar
  35. Jhanke, R. A., & Craven, D. B. (1995). Quantifiying the role of heterotrophic bacteria in the carbon cycle: a need respiration rate measurements. Limnol Oceanogr, 40, 436–41.Google Scholar
  36. Johnson, C. N., Flowers, A. R., Noriea, N. F., Zimmerman, A. M., Bowers, J. C., DePaola, A., & Grimes, D. J. (2010). Relationships between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl Environ Microbiol, 76, 7076–84.CrossRefGoogle Scholar
  37. Joux, F., & Lebaron, P. (1997). Ecological implications of an unproved direct viable count method for aquatic bacteria. Appl Environ Microbiol, 63, 3643–7.Google Scholar
  38. Kaspar, C. W., & Tamplin, M. L. (1993). Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 59, 2425–9.Google Scholar
  39. Koblížek, M., Béjà, O., Bidigare, R. R., Christensen, S., Benitez-Nelson, B., Vetriani, C., & Kolber, M. K. (2003). Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol, 180, 327–38.CrossRefGoogle Scholar
  40. Koren, O., & Rosenberg, E. (2006). Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol, 72, 5254–9.CrossRefGoogle Scholar
  41. Lange R.K. (2013) Patterns of bacterial communities in aquatic ecosystems. Master of Science thesis, University of Washington, 78 ppGoogle Scholar
  42. Lee, O. O., Yang, J., Bougouffa, S., Wang, Y., Batang, Z., Tian, R., Al-Suwailem, A., & Qiana, P. Y. (2012). Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol, 78(20), 7173–84.CrossRefGoogle Scholar
  43. McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.), http://www.biostathandbook.com/. Accessed 15 February 2014.
  44. Morris, R. M., Vergin, K. L., Cho, J.-C., Rappe, M. S., Carlson, C. A., & Giovannoni, S. J. (2005). Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr, 50, 1687–96.CrossRefGoogle Scholar
  45. Motes, M. L., DePaola, A., Cook, D. W., Veazey, J. E., Hunsucker, J. C., Garthright, W. E., Blodgett, R. J., & Chirtel, S. J. (1998). Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Appl Environ Microbiol, 64, 1459–65.Google Scholar
  46. O’Malley, A. A. (2008). Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci, 39, 314–25.CrossRefGoogle Scholar
  47. Parween, S., Murphree, R. L., Edmiston, L., Kaspar, C. W., Portier, K. M., & Tamplin, M. L. (1997). Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay. Appl Environ Microbiol, 63(7), 2607–12.Google Scholar
  48. Pidwirny M. (2006). Abiotic factors and the distribution of species. Fundamentals of Physical Geography, 2nd edition. Date Viewed. http://www.physicalgeography.net/fundamentals/9e.html. Accessed 11 May 2015.
  49. Pincus, D. H. (2005). Encyclopedia of rapid microbiological methods. In M. J. Miller (Ed.), Chapter 1 microbial identification using the Biomérieux VITEK® 2 System Biomérieux (1st ed., pp. 1–32). Hazelwood, MO, USA: Biomérieux Inc., PDA/DHI.Google Scholar
  50. Pinhassi, J., & Hagstrom, Å. (2000). Seasonal succession in marine bacterioplankton. Aquat Microial Ecol, 21, 245–56.CrossRefGoogle Scholar
  51. Pinhassi, J., Zweifel, U. L., & Hagström, Å. (1997). Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol, 63, 3359–66.Google Scholar
  52. Pinyakong, O., Habe, H., & Omori, T. (2003). The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol, 49, 1–19.CrossRefGoogle Scholar
  53. Plante, C. J., & Shriwer, A. G. (1998). Differential lysis of sedimentary bacteria by Arenicola marina L., examination of cell wall structure and exopolymeric capsules as correlates. J Exp Mar Biol Ecol, 229, 35–52.CrossRefGoogle Scholar
  54. Quinn G., Keough M. (2002) Experimental design and data analysis for biologists. Cambridge University Press, 537 pp.Google Scholar
  55. Randa, M. A., Polz, M. F., & Lim, E. (2004). Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl Environ Microbiol, 70, 5469–76.CrossRefGoogle Scholar
  56. Rehnstam, A. S., Bäckman, S., Smith, D. C., Azam, F., & Hagström, Å. (1993). Blooms of sequencespecific cultivable bacteria in the sea. FEMS Microbiol Ecol, 102, 161–6.CrossRefGoogle Scholar
  57. Rheinheimer, G. (1985). Aquatic Microbiology. Almanya: John Wiley & Sons. 0 471 90657.Google Scholar
  58. Ryan, M. P., & Adley, C. C. (2010). Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect, 75, 153–7.CrossRefGoogle Scholar
  59. Sargeant D. (1999) Fecal Contamination Source Identification Methods in Surface Water. Ecology Report #99-345, 1–17.Google Scholar
  60. Schlitzer R. (2014) Ocean Data View, http://odv.awi.de. Accessed 26 December 2014.
  61. Simu, K., Holmfeldt, K., Zweıfel, U. L., & Hagstrom, A. (2005). Culturability and coexistence of colony-forming and single-cell marine bacterioplankton. Appl Environ Microbiol, 71(8), 4793–800.CrossRefGoogle Scholar
  62. Smith, E. M., & Giorgio, P. A. (2003). Low fractions of active bacteria in natural aquatic communities? Aquat Microb Ecol, 31, 203–8.CrossRefGoogle Scholar
  63. Stoderegger, K., & Herndl, G. J. (2001). Visualization of the exopolysaccharide bacterial capsule and its distribution in oceanic environments. Aquat Microb Ecol, 26, 195–9.CrossRefGoogle Scholar
  64. Tada, Y., & Inoue, T. (2000). Use of oligotrophic bacteria for the biological monitoring of heavy metals. J Appl Microbiol, 88, 154–60.CrossRefGoogle Scholar
  65. TSI. (2014a) Turkish Statistical Institute. http://rapory.tuik.gov.tr/16-11-2015-11:58:17–15860683482423193911349294211.html. Accessed 4 November 2015.
  66. TSI. (2014b) Turkish Statistical Institute. http://rapory.tuik.gov.tr/16-11-2015-11:58:47–16263152491327966129106214995.html. Accessed 4 November 2015.
  67. Winkler, L. (1888). Die Bestimmung des in Wasser Gelösten Sauerstoffes. Ber Dtsch Chem Ges, 21(2), 2843–55. doi: 10.1002/cber.188802102122.CrossRefGoogle Scholar
  68. Wit, R., & Bouvier, T. (2006). ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol, 8(4), 755–8.CrossRefGoogle Scholar
  69. Zaccone, R., Caruso, G., & Cali, C. (2002). Heterotorphic Bacteria in the Northern Adriatic Sea: seasonal changes and ectoenzyme profile. Mar Environ Res, 54(1), 1–19.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Fisheries, Marine Biology DepartmentIstanbul UniversityIstanbulTurkey

Personalised recommendations