Skip to main content
Log in

Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g−1 at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharoni, C., & Sparks, D. L. (1991). In Sparks, D. L. & Suarez, D. L.(Eds.), Rates of soil chemical processes (pp. 1–18). Madison: Soil Science Society of America.

  • Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye and Pigments, 77, 16–23.

    Article  CAS  Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Bekçi, Z., Seki, Y., & Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. Journal of Hazardous Materials, 161, 1454–1460.

    Article  Google Scholar 

  • Binnie, C., Kimber, M., Smethurst, G. (2002) Basic water treatment. Royal Society of Chemistry

  • Boyd, G. E., Adamson, A. W., & Jr, L. S. M. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society, 69, 2836–2848.

    Article  CAS  Google Scholar 

  • Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O. (2015). Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination, 364, 2–16.

    Article  CAS  Google Scholar 

  • Chieng, H. I., Lim, L. B. L., & Priyantha, N. (2015a). Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environmental Technology, 36, 86–97.

    Article  CAS  Google Scholar 

  • Chieng, H. I., Lim, L. B. L., & Priyantha, N. (2015b). Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination and Water Treatment, 55, 664–677.

    Article  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2, 1434–1444.

    Article  CAS  Google Scholar 

  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2015). Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal. doi:10.1016/j.aej.2015.07.005.

    Google Scholar 

  • Deshpande, A. V., & Kumar, U. (2002). Effect of method of preparation on photophysical properties of Rh-B impregnated sol–gel hosts. Journal of Non-Crystalline Solids, 306, 149–159.

    Article  CAS  Google Scholar 

  • Dubinin, M. M. and Radushkevich, L. V. (1947). Equation of the characteristic curve of activated charcoal. In: Proceedings of the Academy of Sciences, Physical Chemistry Section. 55, 331

  • Fil, B. A. (2015). Isotherm, kinetic and thermodynamic studies on the adsorption behavior of malachite green dye onto montmorillonite clay. Particulate Science and Technology. doi:10.1080/02726351.2015.1052122.

    Google Scholar 

  • Fil, B. A., Korkmaz, M., & Özmetin, C. (2015). Application of nonlinear regression analysis for methyl violet (MV) dye adsorption from solutions onto illite clay. Journal of Dispersion Science and Technology. doi:10.1080/01932691.2015.1077455.

    Google Scholar 

  • Forziati, F. H., Brownell, R. M., & Hunt, C. M. (1953). Surface areas of cottons and modified cottons before and after swelling as determined by nitrogen sorption. Journal of research of the National Bureau of Standards, 50, 139.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.

    CAS  Google Scholar 

  • Gad, H. M., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081.

    Article  CAS  Google Scholar 

  • Gaur, J. P., & Noraho, N. (1995). Adsorption and uptake of cadmium by Azolla pinnata: kinetics of inhibition by cations. Biomedical and Environmental Sciences, 8, 149–157.

    CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H., & Wu, Z. (2013). Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chemical Engineering Journal, 228, 392–397.

    Article  CAS  Google Scholar 

  • Jain, S. K., Vasudevan, P., & Jha, N. K. (1990). Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Research, 24, 177–183.

    Article  CAS  Google Scholar 

  • Jain, R., Mathur, M., Sikarwar, S., & Mittal, A. (2007). Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85, 956–964.

    Article  CAS  Google Scholar 

  • Kooh, M. R. R., Dahri, M. K., Lim, L. B. L., & Lim, L. H. (2015a). Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste. Arabian Journal for Science and Engineering. doi:10.1007/s13369-015-1877-5.

    Google Scholar 

  • Kooh, M. R. R., Lim, L. B. L., Dahri, M. K., Lim, L. H., & Sarath Bandara, J. M. R. (2015b). Azolla pinnata: an efficient low cost material for removal of methyl violet 2B by using adsorption method. Waste and Biomass Valorization, 6, 547–559.

    Article  Google Scholar 

  • Kooh, M. R. R., Lim, L. B. L., Lim, L. H., & Bandara, J. M. R. S. (2015c). Batch adsorption studies on the removal of malachite green from water by chemically modified Azolla pinnata. Desalination and Water Treatment. doi:10.1080/19443994.2015.1065450.

    Google Scholar 

  • Kundzewicz, Z. W., & Doll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54, 665–675.

    Article  Google Scholar 

  • Lagergren, S. (1898). Zur Theorie der Sogenannten Adsorption gel Ster Stoffe. Kunlinga Svenska Ventenskapsakedemiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Leterme, P., Londoño, A. M., Muñoz, J. E., Súarez, J., Bedoya, C. A., Souffrant, W. B., & Buldgen, A. (2009). Nutritional value of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell) in pigs. Animal Feed Science and Technology, 149, 135–148.

    Article  CAS  Google Scholar 

  • Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K., & Suklueng, M. (2013). Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.12.018.

    Google Scholar 

  • Lim, L. B. L., Priyantha, N., Chan, C. M., Matassan, D., Chieng, H. I., & Kooh, M. R. R. (2014). Adsorption behavior of methyl violet 2B using duckweed: equilibrium and kinetics studies. Arabian Journal for Science and Engineering, 39, 6757–6765.

    Article  CAS  Google Scholar 

  • Lim, L. B. L., Priyantha, N., Chan, C. M., Matassan, D., Chieng, H. I., & Kooh, M. R. R. (2015a). Investigation of the sorption characteristics of water lettuce (WL) as a potential low-cost biosorbent for the removal of methyl violet 2B. Desalination and Water Treatment. doi:10.1080/19443994.2015.1017740.

    Google Scholar 

  • Lim, L. B. L., Priyantha, N., Chieng, H. I., & Dahri, M. K. (2015b). Artocarpus camansi Blanco (Breadnut) core as low-cost adsorbent for the removal of methylene blue: equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment. doi:10.1080/19443994.2015.1007088.

    Google Scholar 

  • Maiyalagan, T., & Karthikeyan, S. (2013). Film-pore diffusion modeling for sorption of azo dye on to exfoliated graphitic nanoplatelets. Indian Journal of Chemical Technology, 20, 7–14.

    CAS  Google Scholar 

  • Mane, V. S., & Babu, P. (2011). Studies on the adsorption of brilliant green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination, 273, 321–329.

    Article  CAS  Google Scholar 

  • Özacar, M., & Şengil, İ. A. (2004). Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids and Surfaces A, 242, 105–113.

    Article  Google Scholar 

  • Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., & Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198.

    Article  Google Scholar 

  • Priyantha, N., Lim, L. B. L., & Dahri, M. K. (2013). Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions. Journal of Applied Sciences in Environmental Sanitation, 8, 179–188.

    Google Scholar 

  • Qi, P., Lin, Z., Li, J., Wang, C., Meng, W., Hong, H., & Zhang, X. (2014). Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products. Food Chemistry, 164, 98–103.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2008). Technical note: phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10, 430–439.

    Article  CAS  Google Scholar 

  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63, 1024.

    Article  CAS  Google Scholar 

  • Ruixia, W., Jinlong, C., Lianlong, C., Zheng-hao, F., Ai-min, L., & Quanxing, Z. (2004). Study of adsorption of lipoic acid on three types of resin. Reactive and Functional Polymers, 59, 243–252.

    Article  Google Scholar 

  • Santhi, T., Prasad, A. L., & Manonmani, S. (2014). A comparative study of microwave and chemically treated Acacia nilotica leaf as an eco friendly adsorbent for the removal of rhodamine B dye from aqueous solution. Arabian Journal of Chemistry, 7, 494–503.

    Article  CAS  Google Scholar 

  • SIGMA-ALDRICH (2014). Rhodamine B [Material Safety Data Sheet] version 5.4 http://www.sigmaaldrich.com/MSDS/MSDS/PrintMSDSAction.do?name=msdspdf_150379221603834. Accessed 21 Sep 2015

  • Sips, R. (1948). Combined form of Langmuir and Freundlich equations. Journal of Chemical Physics, 16, 490–495.

    Article  CAS  Google Scholar 

  • Sözüdoğru, O., Fil, B. A., Boncukcuoğlu, R., Aladağ, E., & Kul, S. (2015). Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: isotherm, kinetic, and thermodynamic analysis. Particulate Science and Technology. doi:10.1080/02726351.2015.1052121.

    Google Scholar 

  • Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2013). Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science, 409, 112–122.

    Article  CAS  Google Scholar 

  • Tempkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12, 327–356.

    Google Scholar 

  • Tsai, S. C., & Juang, K. W. (2000). Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. Journal of Radioanalytical and Nuclear Chemistry, 243, 741–746.

    Article  CAS  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2005). Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 40, 3267–3275.

    Article  CAS  Google Scholar 

  • Wang, M.-H., Li, J., & Ho, Y.-S. (2011). Research articles published in water resources journals: a bibliometric analysis. Desalination and Water Treatment, 28, 353–365.

    Article  Google Scholar 

  • Weber, W., & Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.

    Google Scholar 

  • Yilmaz, A. E., Fil, B. A., Bayar, S., & Karakas, K. Z. (2015). A new adsorbent for fluoride removal: the utilization of sludge waste from electrocoagulation as adsorbent. Global Nest Journal, 17, 186–197.

    Google Scholar 

  • Zehra, T., Priyantha, N., Lim, L. B. L., & Iqbal, E. (2015). Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalination and Water Treatment, 54, 2592–2600.

    Article  CAS  Google Scholar 

  • Zhao, J. (2013). Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid. Fibers and Polymers, 14, 59–64.

    Article  CAS  Google Scholar 

  • Zhao, Y., Yue, Q., Li, Q., Xu, X., Yang, Z., Wang, X., Gao, B., & Yu, H. (2012). Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution. Chemical Engineering Journal, 193, 161–168.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Government of Brunei Darussalam and the Universiti Brunei Darussalam for their support and Centre for Advanced Material and Energy Sciences (CAMES) of Universiti Brunei Darussalam for the usage of XRF machine. A special thanks to Dr. H.M. Thippeswamy of the Department of Agriculture (Soil and Plant Nutrition unit), Ministry of Industrial and Primary Resource, Brunei Darussalam for the provision of the A. pinnata sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Raziq Rahimi Kooh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooh, M.R.R., Lim, L.B.L., Lim, L.H. et al. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method. Environ Monit Assess 188, 108 (2016). https://doi.org/10.1007/s10661-016-5108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5108-7

Keywords

Navigation