Advertisement

Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method

  • Muhammad Raziq Rahimi Kooh
  • Linda B. L. Lim
  • Lee Hoon Lim
  • Muhammad Khairud Dahri
Article

Abstract

This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g−1 at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.

Keywords

Adsorption isotherm Kinetics Thermodynamics Azolla pinnata Rhodamine B dye 

Notes

Acknowledgements

The authors would like to thank the Government of Brunei Darussalam and the Universiti Brunei Darussalam for their support and Centre for Advanced Material and Energy Sciences (CAMES) of Universiti Brunei Darussalam for the usage of XRF machine. A special thanks to Dr. H.M. Thippeswamy of the Department of Agriculture (Soil and Plant Nutrition unit), Ministry of Industrial and Primary Resource, Brunei Darussalam for the provision of the A. pinnata sample.

References

  1. Aharoni, C., & Sparks, D. L. (1991). In Sparks, D. L. & Suarez, D. L.(Eds.), Rates of soil chemical processes (pp. 1–18). Madison: Soil Science Society of America.Google Scholar
  2. Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye and Pigments, 77, 16–23.CrossRefGoogle Scholar
  3. Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource Technology, 58, 217–227.CrossRefGoogle Scholar
  4. Bekçi, Z., Seki, Y., & Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. Journal of Hazardous Materials, 161, 1454–1460.CrossRefGoogle Scholar
  5. Binnie, C., Kimber, M., Smethurst, G. (2002) Basic water treatment. Royal Society of ChemistryGoogle Scholar
  6. Boyd, G. E., Adamson, A. W., & Jr, L. S. M. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society, 69, 2836–2848.CrossRefGoogle Scholar
  7. Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O. (2015). Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination, 364, 2–16.CrossRefGoogle Scholar
  8. Chieng, H. I., Lim, L. B. L., & Priyantha, N. (2015a). Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environmental Technology, 36, 86–97.CrossRefGoogle Scholar
  9. Chieng, H. I., Lim, L. B. L., & Priyantha, N. (2015b). Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination and Water Treatment, 55, 664–677.CrossRefGoogle Scholar
  10. Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085.CrossRefGoogle Scholar
  11. Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2, 1434–1444.CrossRefGoogle Scholar
  12. Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2015). Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal. doi: 10.1016/j.aej.2015.07.005.Google Scholar
  13. Deshpande, A. V., & Kumar, U. (2002). Effect of method of preparation on photophysical properties of Rh-B impregnated sol–gel hosts. Journal of Non-Crystalline Solids, 306, 149–159.CrossRefGoogle Scholar
  14. Dubinin, M. M. and Radushkevich, L. V. (1947). Equation of the characteristic curve of activated charcoal. In: Proceedings of the Academy of Sciences, Physical Chemistry Section. 55, 331Google Scholar
  15. Fil, B. A. (2015). Isotherm, kinetic and thermodynamic studies on the adsorption behavior of malachite green dye onto montmorillonite clay. Particulate Science and Technology. doi: 10.1080/02726351.2015.1052122.Google Scholar
  16. Fil, B. A., Korkmaz, M., & Özmetin, C. (2015). Application of nonlinear regression analysis for methyl violet (MV) dye adsorption from solutions onto illite clay. Journal of Dispersion Science and Technology. doi: 10.1080/01932691.2015.1077455.Google Scholar
  17. Forziati, F. H., Brownell, R. M., & Hunt, C. M. (1953). Surface areas of cottons and modified cottons before and after swelling as determined by nitrogen sorption. Journal of research of the National Bureau of Standards, 50, 139.CrossRefGoogle Scholar
  18. Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.Google Scholar
  19. Gad, H. M., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081.CrossRefGoogle Scholar
  20. Gaur, J. P., & Noraho, N. (1995). Adsorption and uptake of cadmium by Azolla pinnata: kinetics of inhibition by cations. Biomedical and Environmental Sciences, 8, 149–157.Google Scholar
  21. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  22. Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H., & Wu, Z. (2013). Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chemical Engineering Journal, 228, 392–397.CrossRefGoogle Scholar
  23. Jain, S. K., Vasudevan, P., & Jha, N. K. (1990). Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Research, 24, 177–183.CrossRefGoogle Scholar
  24. Jain, R., Mathur, M., Sikarwar, S., & Mittal, A. (2007). Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85, 956–964.CrossRefGoogle Scholar
  25. Kooh, M. R. R., Dahri, M. K., Lim, L. B. L., & Lim, L. H. (2015a). Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste. Arabian Journal for Science and Engineering. doi: 10.1007/s13369-015-1877-5.Google Scholar
  26. Kooh, M. R. R., Lim, L. B. L., Dahri, M. K., Lim, L. H., & Sarath Bandara, J. M. R. (2015b). Azolla pinnata: an efficient low cost material for removal of methyl violet 2B by using adsorption method. Waste and Biomass Valorization, 6, 547–559.CrossRefGoogle Scholar
  27. Kooh, M. R. R., Lim, L. B. L., Lim, L. H., & Bandara, J. M. R. S. (2015c). Batch adsorption studies on the removal of malachite green from water by chemically modified Azolla pinnata. Desalination and Water Treatment. doi: 10.1080/19443994.2015.1065450.Google Scholar
  28. Kundzewicz, Z. W., & Doll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54, 665–675.CrossRefGoogle Scholar
  29. Lagergren, S. (1898). Zur Theorie der Sogenannten Adsorption gel Ster Stoffe. Kunlinga Svenska Ventenskapsakedemiens Handlingar, 24, 1–39.Google Scholar
  30. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221–2295.CrossRefGoogle Scholar
  31. Leterme, P., Londoño, A. M., Muñoz, J. E., Súarez, J., Bedoya, C. A., Souffrant, W. B., & Buldgen, A. (2009). Nutritional value of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell) in pigs. Animal Feed Science and Technology, 149, 135–148.CrossRefGoogle Scholar
  32. Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K., & Suklueng, M. (2013). Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2013.12.018.Google Scholar
  33. Lim, L. B. L., Priyantha, N., Chan, C. M., Matassan, D., Chieng, H. I., & Kooh, M. R. R. (2014). Adsorption behavior of methyl violet 2B using duckweed: equilibrium and kinetics studies. Arabian Journal for Science and Engineering, 39, 6757–6765.CrossRefGoogle Scholar
  34. Lim, L. B. L., Priyantha, N., Chan, C. M., Matassan, D., Chieng, H. I., & Kooh, M. R. R. (2015a). Investigation of the sorption characteristics of water lettuce (WL) as a potential low-cost biosorbent for the removal of methyl violet 2B. Desalination and Water Treatment. doi: 10.1080/19443994.2015.1017740.Google Scholar
  35. Lim, L. B. L., Priyantha, N., Chieng, H. I., & Dahri, M. K. (2015b). Artocarpus camansi Blanco (Breadnut) core as low-cost adsorbent for the removal of methylene blue: equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment. doi: 10.1080/19443994.2015.1007088.Google Scholar
  36. Maiyalagan, T., & Karthikeyan, S. (2013). Film-pore diffusion modeling for sorption of azo dye on to exfoliated graphitic nanoplatelets. Indian Journal of Chemical Technology, 20, 7–14.Google Scholar
  37. Mane, V. S., & Babu, P. (2011). Studies on the adsorption of brilliant green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination, 273, 321–329.CrossRefGoogle Scholar
  38. Özacar, M., & Şengil, İ. A. (2004). Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids and Surfaces A, 242, 105–113.CrossRefGoogle Scholar
  39. Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., & Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198.CrossRefGoogle Scholar
  40. Priyantha, N., Lim, L. B. L., & Dahri, M. K. (2013). Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions. Journal of Applied Sciences in Environmental Sanitation, 8, 179–188.Google Scholar
  41. Qi, P., Lin, Z., Li, J., Wang, C., Meng, W., Hong, H., & Zhang, X. (2014). Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products. Food Chemistry, 164, 98–103.CrossRefGoogle Scholar
  42. Rai, P. K. (2008). Technical note: phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10, 430–439.CrossRefGoogle Scholar
  43. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63, 1024.CrossRefGoogle Scholar
  44. Ruixia, W., Jinlong, C., Lianlong, C., Zheng-hao, F., Ai-min, L., & Quanxing, Z. (2004). Study of adsorption of lipoic acid on three types of resin. Reactive and Functional Polymers, 59, 243–252.CrossRefGoogle Scholar
  45. Santhi, T., Prasad, A. L., & Manonmani, S. (2014). A comparative study of microwave and chemically treated Acacia nilotica leaf as an eco friendly adsorbent for the removal of rhodamine B dye from aqueous solution. Arabian Journal of Chemistry, 7, 494–503.CrossRefGoogle Scholar
  46. SIGMA-ALDRICH (2014). Rhodamine B [Material Safety Data Sheet] version 5.4 http://www.sigmaaldrich.com/MSDS/MSDS/PrintMSDSAction.do?name=msdspdf_150379221603834. Accessed 21 Sep 2015
  47. Sips, R. (1948). Combined form of Langmuir and Freundlich equations. Journal of Chemical Physics, 16, 490–495.CrossRefGoogle Scholar
  48. Sözüdoğru, O., Fil, B. A., Boncukcuoğlu, R., Aladağ, E., & Kul, S. (2015). Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: isotherm, kinetic, and thermodynamic analysis. Particulate Science and Technology. doi: 10.1080/02726351.2015.1052121.Google Scholar
  49. Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2013). Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science, 409, 112–122.CrossRefGoogle Scholar
  50. Tempkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12, 327–356.Google Scholar
  51. Tsai, S. C., & Juang, K. W. (2000). Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. Journal of Radioanalytical and Nuclear Chemistry, 243, 741–746.CrossRefGoogle Scholar
  52. Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2005). Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 40, 3267–3275.CrossRefGoogle Scholar
  53. Wang, M.-H., Li, J., & Ho, Y.-S. (2011). Research articles published in water resources journals: a bibliometric analysis. Desalination and Water Treatment, 28, 353–365.CrossRefGoogle Scholar
  54. Weber, W., & Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.Google Scholar
  55. Yilmaz, A. E., Fil, B. A., Bayar, S., & Karakas, K. Z. (2015). A new adsorbent for fluoride removal: the utilization of sludge waste from electrocoagulation as adsorbent. Global Nest Journal, 17, 186–197.Google Scholar
  56. Zehra, T., Priyantha, N., Lim, L. B. L., & Iqbal, E. (2015). Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalination and Water Treatment, 54, 2592–2600.CrossRefGoogle Scholar
  57. Zhao, J. (2013). Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid. Fibers and Polymers, 14, 59–64.CrossRefGoogle Scholar
  58. Zhao, Y., Yue, Q., Li, Q., Xu, X., Yang, Z., Wang, X., Gao, B., & Yu, H. (2012). Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution. Chemical Engineering Journal, 193, 161–168.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Chemical Sciences Programme, Faculty of ScienceUniversiti Brunei DarussalamBandar Seri BegawanBrunei Darussalam

Personalised recommendations