Skip to main content

Advertisement

Log in

Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2–36.2 t/ha) than other crop rotations (5.04–7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14–38 % less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15–29 % and 17–28 %, respectively), diesel (14–24 % and 8–19 %, respectively) and irrigation (10–27 % and 11–44 %, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • C.S.W.C.R.T.I. (2014). http://www.cswcrtiweb.org/index1.html?Technology.html Assessed on 12.08.2014 at 3.00 pm.

  • Choudhary, V. K., & Suresh, K. P. (2013). Crop and water productivity, profitability and energy consumption pattern of a maize-based crop sequence in the North Eastern Himalayan Region, India. Archives of Agronomy and Soil Sciences, 59(5), 653–669. http://dx.doi.org/10.1080/03650340.2012.665992.

    Article  Google Scholar 

  • Choudhary, A. K., Pooniya, V., Kumar, A., Sepat, S., Bana, R. S., & Jat, S. L. (2013). Scope and potential of maize (Zea mays L.) in North-Western Himalayas. In A. Kumar, S. L. Jat, R. Kumar, & O. P. Yadav (Eds.), Maize production systems for improving resource-use efficiency and livelihood security (pp. 69–73). Pusa Campus, New Delhi- 110 012: Directorate of Maize Research.

    Google Scholar 

  • Cochran, W.G., & Cox G.M. (1957). Experimental Designs. (2nd ed.). Wiley 53, 43–50

  • Devasenapathy, P., Senthilkumar, G., & Shanmugam, P. M. (2009). Energy management in crop production. Indian Journal of Agronomy, 54(1), 80–90.

    Google Scholar 

  • Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., Sanjani, S., Anvarkhah, S., & Aghel. (2011). A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied Energy, 88, 283–288. doi:10.1016/j.apenergy.2010.04.028.

    Article  Google Scholar 

  • Ghosh, B. N., Dogra, P., Sharma, N. K., Alam, N. M., Singh, R. J., & Mishra, P. K. (2015). Effects of resource conservation practices on productivity, profitability and energy budgeting in maize–wheat cropping system of Indian sub-Himalayas. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. doi:10.1007/s40011-015-0492-2.

    Google Scholar 

  • Grassinia, P., Thorburnb, J., Burrc, C., & Cassman, K. G. (2011). High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research, 120(1), 142–150. doi:10.1016/j.fcr.2010.09.012.

    Article  Google Scholar 

  • Headau, N. K., Tuti, M. D., Stanley, J., Mina, B. L., Agarwal, P. K., Bisht, J. K., & Bhatt, J. C. (2014). Energy -use efficiency and economic analysis of vegetable cropping sequences under greenhouse condition. Energy Efficiency, 7(3), 507–515. doi:10.1007/s12053-013-9239-1.

    Article  Google Scholar 

  • Heidari, M. D., & Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36, 220–225. doi:10.1016/j.energy.2010.10.048.

    Article  Google Scholar 

  • I.P.C.C. (2006). IPCC guidelines for national greenhouse gas inventories. In H. A. S. Eggleston, L. Biennia, K. Miwa, T. Negara, & K. Tanabe (Eds.), Prepared by National Greenhouse Gas Inventories Programme. IGES, Japan: Eggleston Published.

    Google Scholar 

  • Jayne, T. S., Chamberlin, J., & Headey, D. D. (2014). Land pressures, the evolution of farming systems, and development strategies in Africa: a synthesis. Food Policy, 48, 1–17. http://dx.doi.org/10.1016/j.foodpol.2014.05.014.

    Article  Google Scholar 

  • Lal, R. (2004). Carbon emission from farm operations. Environmental International, 30, 981–990. doi:10.1016/j.envint.2004.03.005.

    Article  CAS  Google Scholar 

  • Loucks, O.L., & D’Alessio, A. (1975). Energy Flow and Human Adaptation. A Summary of Ecosystem Studies. The Institute of Ecology, Madison, WI

  • Ma, B. L., Liang, B. C., Biswas, D. K., Morrison, M. J., & McLaughlin, N. B. (2012). The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutrient Cycling in Agroecosystem, 94, 15–31. doi:10.1007/s10705-012-9522-0.

    Article  CAS  Google Scholar 

  • Marland, G., West, T. O., Schlamadinger, B., & Canella, L. (2003). Managing soil organic carbon in agriculture: the net effect on green gas house emissions. Tellus, 55B, 613–621.

    Article  CAS  Google Scholar 

  • Martin, J. F., Diemont, S. A. W., Powell, E., Stanton, M., & Levy-Tacher, S. (2006). Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture Ecosystem and Environment, 115(1–4), 128–140. doi:10.1016/j.agee.2005.12.016.

    Article  Google Scholar 

  • Nautiyal, S., Kaechele, H., Rao, K. S., Maikhuri, R. K., & Saxena, K. G. (2007). Energy and economic analysis of traditional versus introduced crops cultivation in the mountains of the Indian Himalayas: a case study. Energy, 32, 2321–2335. doi:10.1016/j.energy.2007.07.011.

    Article  Google Scholar 

  • Pimentel, D. (1980). Energy inputs for the production, formulation, packaging, and transport of various pesticides. In D. Pimentel (Ed.), Handbook of energy utilization in agriculture (pp. 45–55). Boca Raton, FL: CRC.

    Google Scholar 

  • Pimentel, D., Hurd, L. E., Belloti, A. C., Forester, M. J., Oka, I. N., & Sholes, O. D. (1973). Food production and the energy crisis. Science, 102, 443–449.

    Article  Google Scholar 

  • Samra, J.S., Dhyani, B.L. & Sharma, A.R. (1999). Problems and prospectus of natural resource management in Indian Himalayas—a base paper. Hill and Mountain Agro-ecosystem Directorate, Dehradun (NATP).pp 146.

  • Sati, V. P. (2012). Agricultural diversification in the Garhwal Himalaya: a spatio-temporal analysis. Sustainable Agriculture Research, 1(1), 77–86. doi:10.5539/sar.v1n1p77.

    Article  Google Scholar 

  • Sharma, N. K., Ghosh, B. N., Mandal, D., Singh, R. J., & Mishra, P. K. (2014). Conservation agriculture for resource conservation in north-western Himalaya region. In J. Somasundaram et al. (Eds.), Conservation agriculture for carbon sequestration and sustaining soil health (pp. 105–126). New Delhi, India: New India.

    Google Scholar 

  • Singh, R. J. (2012). Weed management in irrigated wheat (Triticum aestivum) with special reference to buttercup weed (Ranunculus spp) in north-west Himalayas. Indian Journal of Agricultural Sciences, 82(8), 706–710.

    CAS  Google Scholar 

  • Singh, R. J., & Ahlawat, I. P. S. (2011). Productivity, competition indices and nutrients dynamics of Bt cotton (Gossypium hirsutum L.) - groundnut (Arachis hypogaea L.) intercropping system using different fertility levels. Indian Journal of Agricultural Sciences, 81(7), 606–611.

    CAS  Google Scholar 

  • Singh, R. J., & Ahlawat, I. P. S. (2015). Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition. Environmental Monitoring and Assessment, 187(5), 1–16. doi:10.1007/s10661-015-4516-4.

    Article  Google Scholar 

  • Singh, R. J., Ghosh, B. N., Sharma, N. K., Patra, S., Dadhwal, K. S., & Mishra, P. K. (2016). Energy budgeting and emergy synthesis of rainfed maize-wheat rotation system with different soil amendment applications. Ecological Indicators, 61(2), 753–765. doi:10.1016/j.ecolind.2015.10.026.

    Article  CAS  Google Scholar 

  • Tuti, M. D., Ved, P., Pandey, B. M., Bhattacharyya, R., Mahanta, D., Bisht, J. K., Kumar, M., Mina, B. L., Kumar, N., Bhatt, J. C., & Srivastva, A. K. (2012). Energy budgeting of colocasia-based cropping system in the Indian sub-Himalayas. Energy, 45, 986–993. http://dx.doi.org/10.1016/j.energy.2012.06.056.

    Article  Google Scholar 

  • van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J., & Van Kessel, C. (2010). Towards an agronomic assessment of N2O emissions: a case study for arable crops. European Journal of Soil Sciences, 61, 903–913. doi:10.1111/j.1365-2389.2009.01217.x.

    Article  Google Scholar 

  • West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture Ecosystem and Environment, 91, 217–232. doi:10.1016/S0167-8809(01)00233-X.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express sincere thanks to Directors, ICAR-IISWC, Dehradun, ICAR-NBSS&LUP, Nagpur and ICAR-NAARM, Hyderabad for their kind guidance and encouragement during the course of this study. They are also grateful to the field staff and farmers of the study area for their assistance in completing this study. They are grateful to the anonymous reviewers and editors for comments and suggestions for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Jeet Singh.

Ethics declarations

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.J., Meena, R.L., Sharma, N.K. et al. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India. Environ Monit Assess 188, 79 (2016). https://doi.org/10.1007/s10661-015-5085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5085-2

Keywords

Navigation