State of the art and advances in the impact assessment of dioxins and dioxin-like compounds

  • Marco Schiavon
  • Vincenzo Torretta
  • Elena Cristina Rada
  • Marco Ragazzi
Article

Abstract

Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) are toxic and persistent organic pollutants that are able to enter the food chain, accumulate in the fat tissues of animals, and consequently pose a serious risk for human health. Consolidated tools for exposure assessment have been implemented during the last decades and widely used, both in the environmental monitoring and in modeling activities. Although the emissive trend and the concentrations in the environment have gradually decreased during the last 20 years, some situations are still underrated and not adequately controlled by the environmental legislation. On the other hand, a complete monitoring of all the pathways of exposure to PCDD/Fs and PCBs is technically and economically unfeasible. Therefore, this paper aims at providing an overview of the traditional approaches used to assess the impacts of PCDD/Fs and PCBs and presenting the novelties introduced during the last years. After an initial characterization of their toxicity and their effects on health, this paper focuses on activities and situations that can result in critical releases of PCDD/Fs and PCBs into the atmosphere and that can represent a hidden threat for the population. In the final part, this study presents the current methodologies for exposure assessment, summarizes the food chain models in a unified way, and puts the light on new methods that can help environmental scientists, risk assessors, and decision makers to estimate the risk related to exposure to PCDD/Fs in different contexts.

Keywords

Polychlorinated dibenzo-p-dioxins Polychlorinated dibenzofurans Polychlorinated biphenyls Persistent organic pollutants Exposure assessment Risk assessment 

References

  1. Abad, E., Martinez, K., Gustems, L., Gomez, R., Guinart, X., Hernandez, I., & Rivera, J. (2007). Ten years measuring PCDDs/PCDFs in ambient air in Catalonia (Spain). Chemosphere, 67(9), 1709–1714.CrossRefGoogle Scholar
  2. Ahlborg, U. G., Becking, G. C., Birnbaum, L. S., Brouwer, A., Derks, H. J. G. M., Feeley, M., Golor, G., Hanberg, A., Larsen, J. C., Liem, A. K. D., Safe, S. H., Schlatter, C., Waern, F., Younes, M., & Yrjänheikki, E. (1994). Toxic equivalency factors for dioxin-like PCBs. Chemosphere, 28(6), 1049–1067.CrossRefGoogle Scholar
  3. Anderson, K. A., & Downing, J. A. (2006). Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water, Air, and Soil Pollution, 176(1), 351–374.CrossRefGoogle Scholar
  4. Argiriadis, E., Rada, E. C., Vecchiato, M., Zambon, S., Ionescu, G., Schiavon, M., Ragazzi, M., & Gambaro, A. (2014). Assessing the influence of local sources on POPs in atmospheric depositions and sediments near Trento (Italy). Atmospheric Environment, 98, 32–40.CrossRefGoogle Scholar
  5. Atkinson, R. (1996). Atmospheric chemistry of PCBs, PCDDs and PCDFs. In E. E. Hester & R. M. Harrison (Eds.), Chlorinated Organic Micropollutants (pp. 53–72). Cambridge: Royal Society of Chemistry.Google Scholar
  6. Augusto, S., Pereira, M. J., Soares, A., & Branquinho, C. (2007). The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins. International Journal of Hygiene and Environmental Health, 210(3–4), 433–438.CrossRefGoogle Scholar
  7. Augusto, S., Maguas, C., & Branquinho, C. (2009). Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: potential for intercalibration. Ecotoxicology, 18(8), 1036–1042.CrossRefGoogle Scholar
  8. Benjamin, S. L., & Belluck, D. A. (2001). A Practical Guide to Understanding, Managing, and Reviewing Environmental Risk Assessment Reports. Boca Raton: Lewis Publishers.Google Scholar
  9. Bertolotti, G., Rada, E. C., Ragazzi, M., Chistè, A., & Gialanella, S. (2014). A Multi-Analytical Approach to the Use of Conifer Needles as Passive Samplers of Particulate Matter and Organic Pollutants. Aerosol and Air Quality Research, 14, 677–685.Google Scholar
  10. Bilau, M., De Henauw, S., Schroijen, C., Bruckers, L., Den Hond, E., Koppen, G., Matthys, C., Van De Mieroop, E., Keune, H., Baeyens, W., Nelen, V., Van Larebeke, N., Willems, J. L., & Schoeters, G. (2009). The relation between the estimated dietary intake of PCDD/Fs and levels in blood in a Flemish population (50–65 years). Environment International, 35(1), 9–13.CrossRefGoogle Scholar
  11. Bruckmann, P., Hiester, E., Klees, M., & Zetzsch, C. (2013). Trends of PCDD/F and PCB concentrations and depositions in ambient air in Northwestern Germany. Chemosphere, 93(8), 1471–1478.CrossRefGoogle Scholar
  12. Caserini, S., Cernuschi, S., Giugliano, M., Grosso, M., Lonati, G., & Mattaini, P. (2004). Air and soil dioxin levels at three sites in Italy in proximity to MSW incineration plants. Chemosphere, 54(9), 1279–1287.CrossRefGoogle Scholar
  13. Castro-Jiménez, J., Deviller, G., Ghiani, M., Loos, R., Mariani, G., Skejo, H., Umlauf, G., Wollgast, J., Laugier, T., Héas-Moisan, K., Léauté, F., Munschy, C., Tixier, C., & Tronczyński, J. (2008). PCDD/F and PCB multi-media ambient concentrations, congener patterns and occurrence in a Mediterranean coastal lagoon (Etang de Thau, France). Environmental Pollution, 156(1), 123–135.CrossRefGoogle Scholar
  14. Chang, H. J., Wang, S., Wang, Y. F., Li, H. W., & Wang, L. C. (2011). Contributions of dry and wet depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans to a contaminated site resulting from a penetachlorophenol manufacturing process. Environmental Monitoring and Assessment, 175, 475–485.CrossRefGoogle Scholar
  15. Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental Pollution, 114(3), 471–492.CrossRefGoogle Scholar
  16. Correa, O., Rifai, H., Raun, L., Suarez, M., & Koenig, L. (2004). Concentrations and vapor-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air of Houston, TX. Atmospheric Environment, 38(39), 6687–6699.CrossRefGoogle Scholar
  17. Cortés, J., González, C. M., Morales, L., Abalos, M., Abad, E., & Aristizábal, B. H. (2014). PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources. Science of the Total Environment, 491–492, 67–74.CrossRefGoogle Scholar
  18. Croes, K., Van Langenhove, K., Elskens, M., Desmedt, M., Roekens, E., Kotz, A., Denison, M. S., & Baeyens, W. (2011). Analysis of PCDD/Fs and dioxin-like PCBs in atmospheric deposition samples from the Flemish measurement network: optimization and validation of a new CALUX bioassay method. Chemosphere, 82(5), 718–724.CrossRefGoogle Scholar
  19. Croes, K., Vandermarken, T., Van Langenhove, K., Elskens, M., Desmedt, M., Roekens, E., Denison, M. S., Van Larebeke, N., & Baeyens, W. (2012). Analysis of PCDD/Fs and dioxin-like PCBs in atmospheric deposition samples from the Flemish measurement network: correlation between the CALUX bioassay and GC–HRMS. Chemosphere, 88(7), 881–887.CrossRefGoogle Scholar
  20. Davies, R. P., & Dobbs, A. J. (1984). The prediction of bioconcentration in fish. Water Research, 18(10), 1253–1262.CrossRefGoogle Scholar
  21. De Fré, R., Cornelis, C., Mensink, C., Nouwen, J., Schoeters, G., & Roekens, E. (2000). Proposed limit values for dioxin deposition in Flanders. Organohalogen Compounds, 45, 324–327.Google Scholar
  22. De Mul, A., Bakker, M. I., Zeilmaker, M. J., Traag, W. A., van Leeuwen, S. P. J., Hoogenboom, R. L. A. P., Boon, P. E., & Klaveren, J. D. (2008). Dietary exposure to dioxins and dioxin-like PCBs in The Netherlands anno 2004. Regulatory Toxicology and Pharmacology, 51(3), 278–287.CrossRefGoogle Scholar
  23. de Souza Pereira, M., Waller, U., Reifenhäuser, W., Torres, J. P., Malm, O., & Körner, W. (2007a). Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia Usneoides (L.) in an industrialized area in Rio de Janeiro state, south east Brazil–Part I: PCDD and PCDF. Chemosphere, 67(9), 1728–1735.CrossRefGoogle Scholar
  24. de Souza Pereira, M., Heitmann, D., Reifenhäuser, W., Meire, R. O., Santos, L. S., Torres, J. P., Malm, O., & Körner, W. (2007b). Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, southeast Brazil–Part II: PCB and PAH. Chemosphere, 67(9), 1736–1745.CrossRefGoogle Scholar
  25. Denys, S., Gombert, D., & Tack, K. (2012). Combined approaches to determine the impact of wood fire on PCDD/F and PCB contamination of the environment: a case study. Chemosphere, 88(7), 806–812.CrossRefGoogle Scholar
  26. Ding, L., Li, Y., Wang, P., Li, X., Zhao, Z., Zhang, Q., Tuan, T., & Jiang, G. (2012). Seasonal trend of ambient PCDD/Fs in Tianjin City, northern China using active sampling strategy. Journal of Environmental Sciences, 24(11), 1966–1971.CrossRefGoogle Scholar
  27. Dömötörová, M., Stachová Sejáková, Z., Kočan, A., Čonka, K., Chovancová, J., & Fabišiková, A. (2012). PCDDs, PCDFs, dioxin-like PCBs and indicator PCBs in soil from five selected areas in Slovakia. Chemosphere, 89(4), 480–485.CrossRefGoogle Scholar
  28. Eduljee, G. H., & Gair, A. J. (1996). Validation of a methodology for modelling PCDD and PCDF intake via the foodchain. Science of the Total. Environment, 187(3), 211–229.Google Scholar
  29. UK Environment Agency (2009). Updated technical background to the CLEA model. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291014/scho0508bnqw-e-e.pdf. Accessed 30 July 2015.
  30. European Commission (2000). Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000L0076&from=EN. Accessed 27 July 2015.
  31. European Commission (2001). Commission Regulation (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1259&from=EN. Accessed 28 July 2015.
  32. European Commission (2006a). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN. Accessed 28 July 2015.
  33. European Commission (2006b). Commission Regulation (EC) No 199/2006 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs as regards dioxins and dioxin-like PCBs. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0199&from=EN. Accessed 28 July 2015.
  34. European Commission (2011). Commission Regulation (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1259&from=EN. Accessed 28 July 2015.
  35. Fattore, E., Fanelli, R., Turrini, A., & di Domenico, A. (2006). Current dietary exposure to polychlorodibenzo-p-dioxins, polychlorodibenzofurans, and dioxin-like polychlorobiphenyls in Italy. Molecular Nutrition & Food Research, 915(50), 915–921.CrossRefGoogle Scholar
  36. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2001). Dreißigste Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes (Thirtieth ordinance on the implementation of the Federal Pollution Control Act). http://www.gesetze-im-internet.de/bundesrecht/bimschv_30/gesamt.pdf. Accessed 28 July 2015.
  37. Federal Ministry of Agriculture and Forestry, Environment and Water (2002). Richtlinie für die mechanisch-biologische Behandlung von Abfällen (Guideline for the mechanical-biological treatment of waste). http://www.bmlfuw.gv.at/dms/lmat/greentec/abfall-ressourcen/behandlung-verwertung/behandlung-mechanisch/MBA/MBA-Richtlinie_020301_2-Original/MBA-Richtlinie_020301_2%20Original.pdf. Accessed 28 July 2015.
  38. Fiedler, H. (1996). Sources of PCDD/PCDF and impact on the environment. Chemosphere, 32(1), 55–64.CrossRefGoogle Scholar
  39. Friedman, C. L., & Lohmann, R. (2014). Comparing sediment equilibrium partitioning and passive sampling techniques to estimate benthic biota PCDD/F concentrations in Newark Bay, New Jersey (U.S.A.). Environmental Pollution, 186, 172–179.CrossRefGoogle Scholar
  40. Godliauskienė, R., Petraitis, J., Jarmalaitė, I., & Naujalis, E. (2012). Analysis of dioxins, furans and DL-PCBs in food and feed samples from Lithuania and estimation of human intake. Food and Chemical Toxicology, 50(11), 4169–4174.CrossRefGoogle Scholar
  41. U.S. Government (1984). Acid Rain and Transported Air Pollutants: Implications for Public Policy. http://govinfo.library.unt.edu/ota/Ota_4/DATA/1984/8401.PDF. Accessed 16 July 2015.
  42. Guerzoni, S., Rossini, P., Molinaroli, E., Rampazzo, G., & Raccanelli, S. (2004). Measurement of atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in the Lagoon of Venice, Italy. Chemosphere, 54(9), 1309–1317.CrossRefGoogle Scholar
  43. Han, D., Nagy, S. R., & Denison, M. S. (2004). Comparison of recombinant cell bioassays for the detection of Ah receptor agonists. Biofactors, 20(1), 11–22.CrossRefGoogle Scholar
  44. Harrad, S. J., & Smith, D. J. T. (1997). Evaluation of a terrestrial food chain model for estimating foodstuff concentrations of PCDD/F. Chemosphere, 34(8), 1723–1737.CrossRefGoogle Scholar
  45. Heimstad, E. S., Grønstøl, G., Hetland, K. T., Alarcon, J. M., Rylander, C., & Mariussen, E. (2015). A survey of dioxin-like contaminants in fish from recreational fishing. Environmental Monitoring and Assessment, 187, 509.CrossRefGoogle Scholar
  46. Hoogenboom, L. A. P., Kan, C. A., Zeilmaker, M. J., Van Eijkeren, J., & Traag, W. A. (2006). Carry-over of dioxins and PCBs from feed and soil to eggs at low contamination levels – influence of mycotoxin binders on the carry-over from feed to eggs. Food Additives & Contaminants, 23(5), 518–527.CrossRefGoogle Scholar
  47. IARC. (1997). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans – Volume 69, Polychlorinated Dibenzo-para-dioxins and Polychlorinated Dibenzofurans (International Agency for the Research on Cancer). http://monographs.iarc.fr/ENG/Monographs/vol69/. Accessed 11 July 2015.Google Scholar
  48. IARC. (2015). Agents Classified by the IARC Monographs, Volumes 1–111 (International Agency for Research on Cancer). http://monographs.iarc.fr/ENG/Classification/ClassificationsGroupOrder.pdf. Accessed 11 July 2015.Google Scholar
  49. Ionescu, G., Zardi, D., Tirler, W., Rada, E. C., & Ragazzi, M. (2012). A critical analysis of emissions and atmospheric dispersion of pollutants from plants for the treatment of residual municipal solid waste. UPB Scientific Bulletin, Series D: Mechanical Engineering, 74(4), 227–240.Google Scholar
  50. Kerst, M., Waller, U., Reifenhäuser, W., & Körner, W. (2004). Carry-over rates of dioxin-like PCB from grass to cows’ milk. Organohalogen Compounds, 66, 2412–2415.Google Scholar
  51. Klánová, J., Čupr, P., Baráková, D., Šeda, Z., Anděl, P., & Holoubek, I. (2009). Can pine needles indicate trends in the air pollution levels at remote sites? Environmental Pollution, 157(12), 3248–3254.CrossRefGoogle Scholar
  52. Kouimtzis, T. H., Samara, C., Voutsa, D., Balafoutis, C. H., & Muller, L. (2002). PCDD/Fs and PCBs in airborne particulate matter of the greater Thessaloniki area, N. Greece. Chemosphere, 47(2), 193–205.CrossRefGoogle Scholar
  53. Lee, D. S., & Nicholson, K. W. (1994). The measurement of atmospheric concentrations and deposition of semi-volatile organic compounds. Environmental Monitoring and Assessment, 35, 59–91.CrossRefGoogle Scholar
  54. Lee, S.-J., Ale, D., Chang, Y.-S., Oh, J.-E., & Shin, S.-K. (2008). Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs. Environmental Pollution, 153(1), 215–222.CrossRefGoogle Scholar
  55. Li, Y. M., Jiang, G. B., Wang, Y. W., Cai, Z. W., & Zhang, Q. H. (2008). Concentrations, profiles and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air of Beijing, China. Atmospheric Environment, 42(9), 2037–2047.CrossRefGoogle Scholar
  56. Li, C., Zheng, M., Zhang, B., Gao, L., Liu, L., Zhou, X., Ma, X., & Xiao, K. (2012). Long-term persistence of polychlorinated dibenzo-p-dioxins and dibenzofurans in air, soil and sediment around an abandoned pentachlorophenol factory in China. Environmental Pollution, 162, 138–143.CrossRefGoogle Scholar
  57. Lin, L.-F., Shih, S.-I., Su, J.-W., Shih, M., Lin, K.-C., Wang, L.-C., & Chang-Chien, G.-P. (2010). Dry and wet deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans on the drinking water treatment plant. Aerosol and Air Quality Research, 10(3), 231–244.Google Scholar
  58. Liu, Q., Li, M., Chen, R., Li, Z. Y., Qian, G. R., An, T. C., Fu, J., & Sheng, G. (2009). Biofiltration treatment of odors from municipal solid waste treatment plants. Waste Management, 29(7), 2051–2058.CrossRefGoogle Scholar
  59. Liu, H.-M., Lu, S.-Y., Buekens, A. G., Chen, T., Li, X.-D., Yan, J.-H., Ma, X.-J., & Cen, K.-F. (2012). Baseline soil levels of PCDD/Fs established prior to the construction of municipal solid waste incinerators in China. Chemosphere, 86(3), 300–307.CrossRefGoogle Scholar
  60. Lohmann, R., & Jones, K. V. (1998). Dioxins and furans in air and deposition: a review of levels, behaviour and processes. Science of the Total Environment, 219(1), 53–81.CrossRefGoogle Scholar
  61. Lohmann, R., Harner, T., Thomas, G. O., & Jones, K. C. (2000). A comparative study of the gas-particle partitioning of PCDD/Fs, PCBs, and PAHs. Environmental Science & Technology, 34(23), 4943–4951.CrossRefGoogle Scholar
  62. Lohmann, R., Gioia, R., Eisenreich, S. J., & Jones, K. C. (2007). Assessing the importance of ab- and adsorption to the gas-particle partitioning of PCDD/Fs. Atmospheric Environment, 41(36), 7767–7777.CrossRefGoogle Scholar
  63. Lorber, M., Cleverly, D., Schaum, J., Phillips, L., Schweer, G., & Leighton, T. (1994). Development and validation of an air-to-beef food chain model for dioxin-like compounds. Science of the Total Environment, 156(1), 39–65.CrossRefGoogle Scholar
  64. Lorber, M., Eschenroeder, A., & Robinson, R. (2000). Testing the USA EPA ISCST-Version 3 model on dioxins: a comparison of predicted and observed air and soil concentrations. Atmospheric Environment, 34(3), 3995–4010.CrossRefGoogle Scholar
  65. Mackay, D., Shiu, W. Y., Ma, K.-C., & Lee, S. C. (2006). Physical-Chemical Properties and Environmental Fate for Organic Chemicals (Vol. II). Boca Raton: Taylor & Francis Group.Google Scholar
  66. Marin, S., Villalba, P., Diaz-Ferrero, J., Font, G., & Yusà, V. (2011). Congener profile, occurrence and estimated dietary intake of dioxins and dioxin-like PCBs in foods marketed in the Region of Valencia (Spain). Chemosphere, 82(9), 1253–1261.CrossRefGoogle Scholar
  67. McLachlan, M. (1997). A simple model to predict accumulation of PCDD/Fs in an agricultural food chain. Chemosphere, 34(5–7), 1263–1276.CrossRefGoogle Scholar
  68. Meneses, M., Schuhmacher, M., & Domingo, J. L. (2002). A design of two simple models to predict PCDD/F concentrations in vegetation and soils. Chemosphere, 46(9–10), 1393–1402.CrossRefGoogle Scholar
  69. Menichini, E., Iacovella, N., Monfredini, F., & Turrio-Baldassarri, L. (2007). Atmospheric pollution by PAHs, PCDD/Fs and PCBs simultaneously collected at a regional background site in central Italy and at an urban site in Rome. Chemosphere, 69(3), 422–434.CrossRefGoogle Scholar
  70. Morra, P., Bagli, S., & Spadoni, G. (2006). The analysis of human health risk with a detailed procedure operating in a GIS environment. Environment International, 32(4), 444–454.CrossRefGoogle Scholar
  71. NATO/CCMS (1988). Scientific basis for the development of the International Toxicity Equivalency Factor (I-24 TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Report No. 178, Dec. 25 1988.Google Scholar
  72. OEHHA. (2009). Cancer Potency Values. http://oehha.ca.gov/risk/pdf/TCDBcas061809.pdf. Accessed 26 July 2015.Google Scholar
  73. Official Journal of the Italian Republic (2006). Legislative decree 152/2006 - Norme in materia ambientale. (Environmental regulations). http://www.camera.it/parlam/leggi/deleghe/06152dl.htm. Accessed 28 July 2015.
  74. Oh, J.-E., Chang, Y.-S., Kim, E.-J., & Lee, D.-W. (2002). Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different sizes of airborne particles. Atmospheric Environment, 36(32), 5109–5117.CrossRefGoogle Scholar
  75. Onofrio, M., Spataro, R., & Botta, S. (2014). Deposition fluxes of PCDD/Fs in the area surrounding a steel plant in northwest Italy. Environmental Monitoring and Assessment, 186(6), 3917–3929.CrossRefGoogle Scholar
  76. Quaß, U., Fermann, M., & Bröker, G. (2004). The European dioxin air emission inventory project – Final results. Chemosphere, 54(9), 1319–1327.CrossRefGoogle Scholar
  77. Rada, E. C., Ragazzi, M., Panaitescu, V., & Apostol, T. (2006). The role of bio-mechanical treatments of waste in the dioxin emission inventories. Chemosphere, 62(3), 404–410.CrossRefGoogle Scholar
  78. Rada, E. C., Franzinelli, A., Ragazzi, M., Panaitescu, V., & Apostol, T. (2007). Modelling of PCDD/F release from MSW bio-drying. Chemosphere, 68(9), 1669–1674.CrossRefGoogle Scholar
  79. Rada, E. C., Ragazzi, M., Zardi, D., Laiti, L., & Ferrari, A. (2011). PCDD/F enviromental impact from municipal solid waste bio-drying plant. Chemosphere, 84(3), 289–295.CrossRefGoogle Scholar
  80. Rada, E. C., Schiavon, M., & Ragazzi, M. (2013). Seeking potential anomalous levels of exposure to PCDD/Fs and PCBs through sewage sludge characterization. Journal of Bioremediation & Biodegradation, 4(8), 1–10.Google Scholar
  81. Rada, E. C., Ragazzi, M., & Schiavon, M. (2014). Assessment of the local role of a steel making plant by POPs deposition measurements. Chemosphere, 110, 53–61.CrossRefGoogle Scholar
  82. Rada, E. C., Ragazzi, M., Marconi, M., Chistè, A., Schiavon, M., Fedrizzi, S., & Tava, M. (2015). PCDD/Fs in the soils in the province of Trento: 10 years of monitoring. Environmental Monitoring and Assessment, 187(1), 4114–4126.CrossRefGoogle Scholar
  83. Ragazzi, M., Tirler, W., Angelucci, G., Zardi, D., & Rada, E. C. (2013). Management of atmospheric pollutants from waste incineration processes: the case of Bozen. Waste Management & Research, 31(3), 235–240.CrossRefGoogle Scholar
  84. Ragazzi, M., Rada, E. C., Marconi, M., Chistè, A., Fedrizzi, S., Segatta, G., Schiavon, M., & Ionescu, G. (2014a). Characterization of the PCDD/F in the Province of Trento. Energy Procedia, 50, 945–952.CrossRefGoogle Scholar
  85. Ragazzi, M., Rada, E. C., Schiavon, M., & Torretta, V. (2014b). Unconventional parameters for a correct design of waste biostabilization plants in agricultural areas. Mitteilungen Klosterneuburg Rebe und Wein, Obstbau und Früchteverwertung, 64(6), 1–13.Google Scholar
  86. Rappolder, M., Schröter-Kermani, C., Schädel, S., Waller, U., & Körner, W. (2007). Temporal trends and spatial distribution of PCDD, PCDF, and PCB in pine and spruce shoots. Chemosphere, 67(9), 1887–1896.CrossRefGoogle Scholar
  87. Saral, A., Gunes, G., Karadeniz, A., & Goncaloglu, B. I. (2015). Gas/particle partitioning of PCDD/F compounds in the atmosphere of Istanbul. Chemosphere, 118, 246–252.CrossRefGoogle Scholar
  88. Sasamoto, T., Ushio, F., Kikutani, N., Saitoh, Y., Yamaki, Y., Hashimoto, T., Horii, S., Nakagawa, J., & Ibe, A. (2006). Estimation of 1999–2004 dietary daily intake of PCDDs, PCDFs and dioxin-like PCBs by a total diet study in metropolitan Tokyo, Japan. Chemosphere, 64(4), 634–641.CrossRefGoogle Scholar
  89. Schecter, A., Papke, O., Ball, M., Lis, A., & Brandt-Rauf, P. (1995). Dioxin concentrations in the blood of workers at municipal waste incinerators. Occupational and Environmental Medicine, 52(6), 385–387.CrossRefGoogle Scholar
  90. Schiavon, M., Ragazzi, M., & Rada, E. C. (2013). A proposal for a diet-based local PCDD/F deposition limit. Chemosphere, 93(8), 1639–1645.CrossRefGoogle Scholar
  91. Sheu, H. L., Lee, W. J., Su, C. C., Chao, H. R., & Fan, Y. C. (1996). Dry deposition of polycyclic aromatic hydrocarbons in ambient air. Journal of Environmental Engineering, 122(12), 1101–1109.CrossRefGoogle Scholar
  92. Shih, M., Lee, W. S., Chang-Chien, G. P., Wang, L. C., Hung, C. Y., & Lin, K. C. (2006). Dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air. Chemosphere, 62(3), 411–416.CrossRefGoogle Scholar
  93. Slob, W., & Van Jaarsveld, J. A. (1993). A chain model for dioxins: from emission to cow’s milk. Chemosphere, 27(1–3), 509–516.CrossRefGoogle Scholar
  94. Slob, W., Olling, M., Derks, H. J. G. M., & de Jong, A. P. J. M. (1995). Congener-specific bioavailability of PCDD/Fs and coplanar PCBs in cows: laboratory and field measurements. Chemosphere, 31(8), 3827–3838.CrossRefGoogle Scholar
  95. Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398–427.CrossRefGoogle Scholar
  96. Stiefelman, M. (2007). Using doubly-labeled water measurements of human energy expenditure to estimate inhalation rates. Science of the Total Environment, 373(2–3), 585–590.CrossRefGoogle Scholar
  97. Syracuse Research Corporation, 2001. Sediment Sampling, SOP SRC-OGDEN-04. http://www2.epa.gov/sites/production/files/documents/r8-src_src-ogden-04.pdf. Accessed 27 July 2015.
  98. Thompson, K. M., & Burmaster, D. E. (1991). Parametric distributions for soil ingestion by children. Risk Analysis, 11(2), 339–342.CrossRefGoogle Scholar
  99. Trapp, S. (2007). Fruit tree model for uptake of organic compounds from soil and air. SAR and QSAR in Environmental Research, 18(3–4), 367–387.CrossRefGoogle Scholar
  100. USEPA (1987). Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and –dibenzofurans (CDDs and CDFs). EPA/625/3-87/012.Google Scholar
  101. USEPA (1994a). Sediment Sampling, SOP No. 2016. http://www.dem.ri.gov/pubs/sops/wmsr2016.pdf. Accessed 30 July 2015.
  102. USEPA (1994b). Method 1613 – Tetra-through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS. http://www.epa.gov/sites/production/files/2015-08/documents/method_1613b_1994.pdf. Accessed 30 July 2015.
  103. USEPA. (1997). Health Effects Assessment Summary Tables, FY 1997 Update. Washington, DC, USA: U.S. Environmental Protection Agency.Google Scholar
  104. USEPA (1999a). Residual Risk – Report to Congress. Technical Report EPA-453/R-99-001. http://www.epa.gov/airtoxics/rrisk/risk_rep.pdf. Accessed 20 July 2015.
  105. USEPA. (1999b). Compendium Method TO-9A, Determination of polychlorinated, polybrominated and brominated/chlorinated dibenzo-p-dioxins and dibenzofurans in ambient air. Cincinnati, OH, USA: U.S. Environmental Protection Agency, Center for Environmental Research Information Office of Research and Development.Google Scholar
  106. USEPA (2000). Supplementary guidance for conducting health risk assessment of chemical mixtures. http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=4486. Accessed 20 July 2015.
  107. USEPA (2005). Guidelines for Carcinogen Risk Assessment, EPA/630/R-00/004-March 2005. http://www2.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf. Accessed 20 July 2015.
  108. USEPA (2008). Method 1668B – Chlorinated biphenyl congeners in water, soil, sediment, biosolids, and tissue by HRGC/HRMS. Washington DC, USA.Google Scholar
  109. USEPA (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). http://nepis.epa.gov/Exe/ZyPDF.cgi/P1002UOM.PDF?Dockey=P1002UOM.PDF. Accessed 15 December 2015.
  110. USEPA. (2010). Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. Washington, DC, USA: EPA/100/R-10/005, U.S. Environmental Protection Agency, Risk Assessment Forum.Google Scholar
  111. USEPA (2012). Human Health Tables. http://www.epa.gov/hudson/tables.htm. Accessed 20 July 2015.
  112. USEPA (2014a). Superfund Chemical Data Matrix Methodology. http://semspub.epa.gov/work/11/189162.pdf. Accessed 20 July 2015.
  113. USEPA (2014b). Polychlorinated biphenyls (PCBs). Integrated Risk Information System. http://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0294_summary.pdf. Accessed 20 July 2015.
  114. USEPA (2014c). Calculation of interim values. http://pubweb.epa.gov/superfund/sites/npl/hrsres/tools/method_3.pdf. Accessed 20 July 2015.
  115. USEPA (2015). NATA Glossary of Key Terms. http://www3.epa.gov/airtoxics/natamain/gloss1.html. Accessed 15 December 2015.
  116. Van den Berg, M., Birnbaum, L., Bosveld, T. T. C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J. P., Hanberg, A., Hasegawa, R., Kennedy, S. W., Kubiak, T., Larsen, J. C., van Leeuwen, F. X., Liem, A. K., Nolt, C., Peterson, R. E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F., & Zacharewski, T. (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, and PCDFs for humans and wildlife. Environmental Health Perspectives, 106(12), 775–792.CrossRefGoogle Scholar
  117. Van den Berg, M., Birnbaum, L., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223–241.CrossRefGoogle Scholar
  118. Van Lieshout, L., Desmedt, M., Roekens, E., De Fré, R., Van Cleuvenbergen, R., & Wevers, M. (2001). Deposition of dioxins in Flanders (Belgium) and a proposition for guide values. Atmospheric Environment, 35(S1), S83–S90.CrossRefGoogle Scholar
  119. Vassura, I., Passarini, F., Ferroni, L., Bernardi, E., & Morselli, L. (2011). PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator. Chemosphere, 83(10), 1366–1373.CrossRefGoogle Scholar
  120. VDI. (1996). Technical rule - Measurement of dustfall; survey (VDI 2119 Blatt 2). Düsseldorf, Germany: Association of German Engineers.Google Scholar
  121. VDI. (2005). Maximum immission values for dioxin to protect farm animals (VDI 2310 Blatt 46). Düsseldorf, Germany: Association of German Engineers.Google Scholar
  122. WHO (1991). Consultation on Tolerable Daily Intake from Food of PCDDs and PCDFs. World Health Organization, Regional Office for Europe. EUR/ICP/PCS 030.Google Scholar
  123. WHO. (1998). Executive Summary – Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI). Geneva, Switzerland: WHO Consultation May 25-29 1998, World Health Organization.Google Scholar
  124. WHO (2008). Guidelines for Drinking-water Quality - Volume 1: Recommendations. http://www.who.int/water_sanitation_health/dwq/fulltext.pdf. Accessed 28 July 2015.
  125. WHO (2014). Dioxins and their effects on human health. http://www.who.int/mediacentre/factsheets/fs225/en/. Accessed 10 July 2015.
  126. Wu, C.-H., Chang-Chien, G.-P., & Lee, W.-S. (2005). Photodegradation of tetra- and hexachlorodibenzo-p-dioxins. Journal of Hazardous Materials, 120(1–3), 257–263.CrossRefGoogle Scholar
  127. Yu, L. P., Mai, B. X., Meng, X. Z., Bi, X. H., Sheng, G. Y., Fu, J. M., & Peng, P. (2006). Particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Guangzhou, China. Atmospheric Environment, 40(1), 96–108.CrossRefGoogle Scholar
  128. Zhang, S., Peng, P., Huang, W., Li, X., & Zhang, G. (2009). PCDD/PCDF pollution in soils and sediments from the Pearl River Delta of China. Chemosphere, 75(9), 1186–1195.CrossRefGoogle Scholar
  129. Zhang, M., Zhang, S., Zhang, Z., Xu, Z., Feng, G., & Ren, M. (2014). Influence of a municipal solid waste incinerator on ambient air PCDD/F levels: a comparison of running and non-running periods. Science of the Total Environment, 491–492, 34–41.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marco Schiavon
    • 1
  • Vincenzo Torretta
    • 2
  • Elena Cristina Rada
    • 1
    • 2
  • Marco Ragazzi
    • 1
  1. 1.Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
  2. 2.Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly

Personalised recommendations