Skip to main content

Advertisement

Log in

Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element ‘As(III)’ from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R 2 = 0.999, whereas for pseudo-first-order kinetics model, the value of R 2 was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R 2 > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 3− > HCO3  > Cl > SO4 2−. The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • An, B., Liang, Q., & Zhao, D. (2011). Removal of arsenic (V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Research, 45(5), 1961–1972.

    Article  CAS  Google Scholar 

  • Bagla, P., & Kaiser, J. (1996). India’s spreading health crisis draws global arsenic experts. Science, 274(5285), 174–175.

    Article  CAS  Google Scholar 

  • Banerjee, K., Amy, G. L., Prevost, M., Nour, S., Jekel, M., Gallagher, P. M., & Blumenschein, C. D. (2008). Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Research, 42(13), 3371–3378.

    Article  CAS  Google Scholar 

  • Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39(5), 763–770.

    Article  CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science and Technology, 35(13), 2621–2626.

    Article  CAS  Google Scholar 

  • Caussy, D. (2003). Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicology and Environmental Safety, 56(1), 164–173.

    Article  CAS  Google Scholar 

  • Cernansky, S., Urik, M., Sevc, J., & Khun, M. (2007). Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environmental Science and Pollution Research, 14(1), 31–35.

    Article  CAS  Google Scholar 

  • Chakraborti, A. K., & Saha, K. C. (1987). Arsenical dermatosis from tube well water in West Bengal. Indian Journal of Medical Research, 85, 326–334.

    Google Scholar 

  • Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Journal of Environmental Management, 91(11), 2238–2247.

    Article  CAS  Google Scholar 

  • Criscuoli, A., Majumdar, S., Figoli, a., Sahoo, G. C., Bafaro, P., Bandyopadhyay, S., & Drioli, E. (2012). As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules. Journal of Hazardous materials, 211-212, 281–287.

    Article  CAS  Google Scholar 

  • Danish, M. I., Qazi, I. A., Zeb, A., Habib, A., Awan, M. A., & Khan, Z. (2013). Arsenic removal from aqueous solution using pure and metal-doped titania nanoparticles coated on glass beads: adsorption and column studies. Journal of Nanomaterials, 2013(2013), 1–17.

    Article  Google Scholar 

  • Das, B., Devi, R. R., Umlong, I. M., Borah, K., Banerjee, S., & Talukdar, A. K. (2013). Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach. Journal of Environmental Health Science and Engineering, 11(42), 1–10.

    Google Scholar 

  • Desesso, J. M., Jacobson, C. F., Scialli, A. R., Farr, C. H., & Holson, J. F. (1998). An assessment of the developmental toxicity of inorganic arsenic. Reproductive Toxicology, 12(4), 385–433.

    Article  CAS  Google Scholar 

  • Dhoble, R. M., Lunge, S., Bhole, A. G., & Rayalu, S. (2011). Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water. Water Research, 45(16), 4769–4781.

    Article  CAS  Google Scholar 

  • Dhoble, R. M., Lungea, S., Bhole, A. G., & Rayalu, S. (2012). Low cost magnetic iron oxide (MIO) adsorbent potential for arsenic removal (pp. 271–275). Dubai: International conference on chemical, civil and environment engineering. March 24-25.

    Google Scholar 

  • Ergül, B., Bektaş, N., & Öncel, M. S. (2014). The use of manganese oxide minerals for the removal arsenic and selenium anions from aqueous solutions. Energy and Environmental Engineering, 2(5), 103–112.

    Google Scholar 

  • Escudero, C., Fiol, N., Villaescusa, I., & Bollinger, J. C. (2009). Arsenic removal by waste metal (hydr)oxide entrapped into calcium alginate beads. Journal of Hazardous materials, 164(2-3), 533–541.

    Article  CAS  Google Scholar 

  • Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z., & Wang, X. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. Journal of Hazardous materials, 160(2-3), 655–661.

    Article  CAS  Google Scholar 

  • FAO, (1985). Water quality guidelines for maximum crop production. Food and Agriculture Organization/UN, <http://www.fao.org/docrep/T0551E>(13.9.06)

  • Freundlich, H. M. F. Z. (1906). Stoechiometrie und Verwandtschaftslehre. Zeitschriftfuer Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Gu, Z. M., Fang, J., & Deng, B. L. (2005). Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science and Technology, 39(10), 3833–3843.

    Article  CAS  Google Scholar 

  • Guo, H. M., Stuben, D., & Berner, Z. (2007). Adsorption of arsenic (III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53.

    Article  CAS  Google Scholar 

  • Gupta, A., Mohammed, Y., & Sankararmakrishnan, N. (2013). Chitosan- and Iron- chitosan-coated sand filters: a cost-effective approach for enhanced arsenic removal. Industrial and Engineering Chemistry Research, 52(5), 2066–2072.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Saini, V. K., & Jain, N. (2005). Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. Journal of Colloid and Interface Science, 288, 55–60.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Journal of Environmental Science and Health Part B: Process Safety Environmental Protection, 76(2), 183–191.

    CAS  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312.

    Article  CAS  Google Scholar 

  • Jessen, S., Larsen, F., Koch, C. B., & Avin, E. (2005). Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environmental Science and Technology, 39(20), 8045–8051.

    Article  CAS  Google Scholar 

  • Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95–107.

    CAS  Google Scholar 

  • Kaczala, F., Marques, M., & Hogland, W. (2009). Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Bioresource Technology, 100(1), 235–243.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by Nanoscale zero-valent iron. Environmental Science and Technology, 39(5), 1291–1298.

    Article  CAS  Google Scholar 

  • Kapas, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning- a review. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 41(10), 2399–2428.

    Article  Google Scholar 

  • Kim, J., & Benjamin, M. M. (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38(8), 2053–2062.

    Article  CAS  Google Scholar 

  • Korte, N. E., & Fernando, Q. (1991). A review of As(III) in groundwater. Critical Reviews in Environmental Control, 21(1), 1–39.

    Article  CAS  Google Scholar 

  • Kundu, S., & Gupta, A. K. (2006). Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): evaluation of kinetics, equilibrium and thermodynamic models. Separation and Purification Technology, 51(2), 165–172.

    Article  CAS  Google Scholar 

  • Kundu, S., & Gupta, A. K. (2007). As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies. Chemical Engineering Journal, 129(1-3), 123–131.

    Article  CAS  Google Scholar 

  • Kuriakose, S., Singh, T. S., & Pant, K. K. (2004). Adsorption of As(III) from aqueous solution onto iron oxide impregnated activated alumina. Water Quality Research Journal Canada, 39(3), 258–266.

    CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Lakshmipathiraj, P., Narasimhan, B. R. V., Prabhakar, S., & Bhaskar, R. G. (2006). Adsorption studies of arsenic on Mn-substituted iron oxyhydroxide. Journal of Colloid and Interface Science, 304(2), 317–322.

    Article  CAS  Google Scholar 

  • Lekic, B. M., Markovic, D. D., Rajakovic-Ognjanovic, V. N., Yukic, A. R., & Rajakovic, L. V. (2013). Arsenic removal from water using industrial by-products. Journal of Chemistry, 2013, 121024(1)–121024(9).

    Article  Google Scholar 

  • Lenoble, C., Laclautre, V., Deluchat, B. S., & Bollinger, J. C. (2005). Arsenic removal by adsorption on iron (III) phosphate. Journal of Hazardous materials, 123(1-3), 262–268.

    Article  CAS  Google Scholar 

  • Luther, S., Borgfeld, N., Kim, J., & Parsons, J. G. (2012). Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Michrochemical Journal, 101(2012), 30–36.

    Article  CAS  Google Scholar 

  • Malana, M. A., Qureshi, R. B., & Ashiq, M. N. (2011). Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: kinetics and mechanism. Chemical Engineering Journal, 172(2-3), 721–727.

    Article  CAS  Google Scholar 

  • Mazumdaer, D. N. G. (2008). Chronic arsenic toxicity and human health. Indian Journal of Medical Research, 128(4), 436–447.

    Google Scholar 

  • Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource Technology, 100(2), 634–637.

    Article  CAS  Google Scholar 

  • Pena, M. E., Meng, X. G., Korfiatis, G. P., & Jing, C. Y. (2006). Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science and Technology, 40(4), 1257–1262.

    Article  CAS  Google Scholar 

  • Ranjan, D., Talat, M., & Hasan, S. H. (2009). Biosorption of arsenic from aqueous solution using agriculture residue rice polish. Journal of Hazardous materials, 166(2-3), 1050–1059.

    Article  CAS  Google Scholar 

  • Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelope. Environmental Science and Technology, 32(3), 344–349.

    Article  CAS  Google Scholar 

  • Ren, Z., Zhang, G., & Chen, J. P. (2011). Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. Journal of Colloid and Interface Science, 358(1), 230–237.

    Article  CAS  Google Scholar 

  • Rome, L., & Gadd, G. M. (1987). Copper adsorption by Rhizopus arrhizus, Cladosorium resinae and Penicillium italicum. Applied Microbiology and Biotechnology, 26(1), 84–90.

    Article  Google Scholar 

  • Sarkar, S., Gupta, A., Biswas, R. K., Deb, A. K., Greenleaf, J. E., & Sen Gupta, A. K. (2005). Well head arsenic removal units in remote villages in Indian Subcontinent: field results and performance evaluation. Water Research, 39(10), 2196–2206.

    Article  CAS  Google Scholar 

  • Sharma, Y. C., Uma, S., & Upadhyay, S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy and Fuels, 23, 2983–2988.

    Article  CAS  Google Scholar 

  • Shipley, H. J., Yean, S., Kan, A. T., & Tomson, M. B. (2009). Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Environmental Toxicology and Chemistry, 28(3), 509–515.

    Article  CAS  Google Scholar 

  • Singh, A. P., Srivastava, K. K., & Shekhar, H. (2009). Arsenic (III) removal from aqueous solutions by mixed adsorbent. Indian Journal of Chemical Technology, 16, 136–141.

    CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78(9), 1093–1103.

    CAS  Google Scholar 

  • Souter, P. F., Cruickshank, G. D., Tankerville, M. Z., Keswick, B. H., Ellis, B. D., Langworthy, D. E., Metz, K. A., Appleby, M. R., Hamilton, N., Jones, A. L., & Perry, J. D. (2003). Evaluation of a new water treatment for point-of-use house-hold applications to remove microorganisms and arsenic from drinking water. Journal of Water and Health, 1(2), 73–84.

    CAS  Google Scholar 

  • Sun, X., & Doner, H. E. (1998). Adsorption and oxidation of arsenite on goethite. Soil Science, 163(4), 278–287.

    Article  CAS  Google Scholar 

  • Wang, X., Guo, Y., Yang, L., Han, M., Zhao, J., & Cheng, X. (2012). Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Journal of Environmental Analytical Toxicology, 2(7), 154(1)–154(7).

    Article  Google Scholar 

  • Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., & Chen, S. (2014). Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous materials, 268, 124–131.

    Article  CAS  Google Scholar 

  • Weber, W. J., Jr., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitation Engineering, Division of American Society Civil Engineering, 89, 31–60.

    Google Scholar 

  • WHO. (1993). Guidelines for drinking water quality Recommendations, 1 (2nd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Yavuz, C. T., Mayo, J. T., Yu, W. W., Prakash, A., Falkner, J. C., Yean, S., Cong, L., Shipley, H. J., Kan, A., Tomson, M., Natelson, D., & Colvin, V. L. (2006). Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 314(5801), 964–967.

    Article  Google Scholar 

  • Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., Kan, A. T., Colvin, V. L., & Tomson, M. B. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.

    Article  CAS  Google Scholar 

  • Yusof, N. Z., Kassim, M. A., Ismail, R., & Yusoff, A. R. M. (2009). Development of Simple and Cost Effective Method for Arsenic(III) Removal. Iranica Journal of Energy and Environment, 5(3), 287–294.

    Google Scholar 

  • Zhang, Y. M., Yang, M., & Huang, X. (2003). Arsenic (V) removal with a Ce (IV)-doped iron oxide adsorbent. Chemosphere, 51(9), 945–952.

    Article  CAS  Google Scholar 

  • Zhao, C., Du, S., Wang, T., Zhang, J., & Luan, Z. (2012). Arsenic removal from drinking water by self-made PMIA nanofiltration membrane. Advances in Chemical Engineering and Science, 2(3), 366–371.

    Article  CAS  Google Scholar 

  • Zouboulis, A., & Katsoyiannis, I. (2002). Removal of arsenates from contaminated water by coagulation-direct filtration. Separation Science and Technology, 37(12), 2859–2873.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology (DST), Delhi (Project number: FTP/PS-40/2011) and Nanotechnology Lab, Jaypee University of Information Technology, Waknaghat, Solan-173234, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kango, S., Kumar, R. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms. Environ Monit Assess 188, 60 (2016). https://doi.org/10.1007/s10661-015-5077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5077-2

Keywords

Navigation