Skip to main content

Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model

Abstract

The air pollution index (API) is an important figure used for measuring the quality of air in the environment. The API is determined based on the highest average value of individual indices for all the variables which include sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and suspended particulate matter (PM10) at a particular hour. API values that exceed the limit of 100 units indicate an unhealthy status for the exposed environment. This study investigates the risk of occurrences of API values greater than 100 units for eight urban areas in Peninsular Malaysia for the period of January 2004 to December 2014. An extreme value model, known as the generalized Pareto distribution (GPD), has been fitted to the API values found. Based on the fitted model, return period for describing the occurrences of API exceeding 100 in the different cities has been computed as the indicator of risk. The results obtained indicated that most of the urban areas considered have a very small risk of occurrence of the unhealthy events, except for Kuala Lumpur, Malacca, and Klang. However, among these three cities, it is found that Klang has the highest risk. Based on all the results obtained, the air quality standard in urban areas of Peninsular Malaysia falls within healthy limits to human beings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Afroz, A., Hassan, M. N., & Ibrahim, N. A. (2003). Review of air pollution and health impact in Malaysia. Environmental Research, 92, 71–77.

    Article  CAS  Google Scholar 

  2. Ahmat, H., Yahaya, A. S., & Ramli, N. A. (2015). PM10 analysis for three industrial areas using extreme value. Sains Malaysiana, 44, 175–185.

    Article  Google Scholar 

  3. Benktander, G., & Segerdahl, C. (1960). On the analytical representation of claim distributions with special reference to excess of loss reinsurance. Brussels: XVIth International Congress of Actuaries.

    Google Scholar 

  4. Chen, B., & Kan, H. (2004). Particulate air pollution in urban areas of Shanghai, China: healt-based economic assessment. Science of the Total Environment, 322, 71–79.

    Article  Google Scholar 

  5. Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.

    Book  Google Scholar 

  6. Davison, A. C. (1984). Modelling extremes over high thresholds with an application. Statistical Extremes and Applications, NATO ASI Series, 131, 461–482.

    Article  Google Scholar 

  7. Davison, A., & Smith, R. (1990). Models for exceedances over high thresholds. Journal of the Royal Statistical Society: Series B, 52, 393–442.

    Google Scholar 

  8. Department of Environment. (1997). A guide to air pollutant index in Malaysia (API). Kuala Lumpur, Malaysia: Ministry of Science, Technology and the Environment.

    Google Scholar 

  9. Ee-Ling, O., Mustaffa, N. I. H., Amil, N., Khan, M. F., & Latif, M. T. (2015). Source contribution of PM2.5 at different locations on the Malaysian peninsula. Bulletin of Environmental Contamination and Toxicology, 94, 537–542.

    Article  Google Scholar 

  10. Ercelebi, S. G., & Toros, H. (2009). Extreme value analysis of Istanbul air pollution data. Clean, 37, 122–131.

    CAS  Google Scholar 

  11. Fujii, Y., Tohno, S., Amil, N., Latif, M. T., Oda, M., Matsumoto, J., & Mizohata, A. (2015). Annual variations of carbonaceous PM2.5 in Malaysia: influence by Indonesian peatland fires. Atmospheric Chemistry and Physics Discussions, 15, 22419–22449.

    Article  Google Scholar 

  12. Ghosh, S., & Resnick, S. A. (2010). A discussion on mean excess plots. Stochastic Processes and their Applications, 120, 1492–1517.

    Article  Google Scholar 

  13. Gin, O. K. (2009). Historical dictionary of Malaysia (pp. 157–158). Malaysia: Scarecrow Press.

    Google Scholar 

  14. Grimshaw, S. D. (1993). Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics, 35, 185–191.

    Article  Google Scholar 

  15. Hall, W., & Wellner, J. (1981). Mean residual life. In Statistics and Related Topics (pp. 169–184).

    Google Scholar 

  16. Hosking, J. R. M., & Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339–349.

    Article  Google Scholar 

  17. Husler, J., Li, D., & Raschke, M. (2011). Estimation for the generalized Pareto distribution using Maximum likelihood and goodness of fit. Communications in Statistics-Theory and Methods, 40, 2500–2510.

    Article  Google Scholar 

  18. Juneng, L., Latif, M. T., Tangang, F. T., & Mansor, H. (2009). Spatio-temporal characteristics of PM10 concentration across Malaysia. Atmospheric Environment, 23, 4584–4594.

    Article  Google Scholar 

  19. Khan, M., Latif, M., Saw, W., Amil, N., Nadzir, M., Sahani, M., Tahir, N., & Chung, J. (2015). Fine particulate matter associated with monsoonal effect and the responses of biomass fire hotspots in the tropical environment. Atmospheric Chemistry and Physics Discussions, 15, 22215–22261.

    Article  Google Scholar 

  20. Masseran, N., Razali, A. M., Ibrahim, K., Zaharim, A., & Sopian, K. (2013). Application of the single imputation method to estimate missing wind speed data in Malaysia. Research Journal of Applied Sciences, Engineering and Technology, 6, 1780–1784.

    Google Scholar 

  21. Md Hashim, N., & Ahmad, S. (2006). Kebakaran hutan dan isu pencemaran udara di Malaysia: Kes jerebu pada Ogos 2005. Jurnal e-Bangi, 1, 19.

    Google Scholar 

  22. Melaka and George Town, Historic Cities of the Straits of Malacca (2008). Available from: http://whc.unesco.org/en/list/1223/.

  23. Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.

    Article  Google Scholar 

  24. Reiss, R.-D., & Thomas, M. (2007). Statistical analysis of extreme values: with application to insurance, finance, hydrology and other fields. Berlin: Die Deutsche Bibliothek.

    Google Scholar 

  25. Ribatet, M. (2007). POT: Modelling Peak Over a Threshold. R News, 7, 33–36.

    Google Scholar 

  26. Sahani, M., Zainon, N. A., Wan Mahiyuddin, W. R., Latif, M. T., Hod, R., Khan, M. F., Tahir, N. M., & Chan, C.-C. (2014). A case-crossover analysis of forest fire haze events and mortality in Malaysia. Atmospheric Environment, 96, 257–265.

    Article  CAS  Google Scholar 

  27. Scarrott, C., & MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT- Statistical Journal, 10, 33–60.

    Google Scholar 

  28. Singh, V. P., & Guo, H. (1995). Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy (POME). Hydrological Sciences-Journal-des Sciences Hydrologiques, 40, 165–181.

    Article  Google Scholar 

  29. Smith, R. L. (1984). Threshold methods for sample extremes. Statistical Extremes and Applications, NATO ASI Series, 131, 621–638.

    Article  Google Scholar 

  30. Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72, 67–90.

    Article  Google Scholar 

  31. Smith, R. L. (1989). Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statistical Science, 4, 367–377.

    Article  Google Scholar 

  32. Southworth, H., & Heffernan, J. E. (2014). texmex: Statistical modelling of extreme values. R package version 2.1.

    Google Scholar 

  33. The World According to GaWC 2008. (2009). Globalization and World Cities Study Group and Network (GaWC). Loughborough: Loughborough University.

    Google Scholar 

  34. Varkkey, H. (2013). Patronage politics, plantation fires and transboundary haze. Environmental Hazards, 12, 200–217.

    Article  Google Scholar 

  35. Wan Mahiyuddin, W. R., Sahani, M., Aripin, R., Latif, M. T., Thach, T.-Q., & Wong, C.-M. (2013). Short-term effects of daily air pollution on mortality. Atmospheric Environment, 65, 69–79.

    Article  CAS  Google Scholar 

  36. Yong, D. L., & Peh, K. S. H. (2014). South-east Asia’s forest fires: blazing the policy trail. ORYX.

    Google Scholar 

  37. Zhou, S.-M., Deng, Q.-H., & Lui, W.-W. (2012). Extreme air pollution events: Modeling and prediction. Journal of Central South University of Technology, 19, 1668–1672.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the staff of the Department of Environment Malaysia for providing the wind speed data that made this paper possible. This research would not be possible without the sponsorship from Universiti Kebangsaan Malaysia and Ministry of Higher Education in Malaysia (grant number FRGS/1/2014/SG04/UKM/03/1 and DPP-2015-FST).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nurulkamal Masseran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masseran, N., Razali, A.M., Ibrahim, K. et al. Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model. Environ Monit Assess 188, 65 (2016). https://doi.org/10.1007/s10661-015-5070-9

Download citation

Keywords

  • Air pollution assessment
  • Unhealthy events
  • Generalized Pareto model
  • Return period