Skip to main content

Advertisement

Log in

Evaluation of nutrients and major ions in streams—implications of different timescale procedures

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Small watersheds are characterized by a high degree of sensitivity to changes observed in their environment, making them important sampling and management units. Due to this high sensitivity, several studies have shown that intensive collecting may be more effective in these systems compared to other timescale procedures. The aim of this study was to evaluate the concentration of organic and inorganic nutrients and major ions dissolved in two small watersheds with different land uses to determine whether there are differences between these watersheds with different levels of impact and to identify the most appropriate timescale procedure for the variables under analysis. Therefore, monthly, daily, and hourly samples were taken in the two streams in the northeast of Brazil. One of the streams is located in an undisturbed area (environmental protected area) (S1) and one in a disturbed area (S2). The results showed significant differences for conductivity, temperature, pH, dissolved oxygen (%), sodium (Na+), and chloride (Cl) ions and higher values presented in the anthropogenic stream. Dissolved inorganic nitrogen (DIN) in S2 mainly comprised ammonium (NH4 +), while nitrate (NO3 ) predominated in S1. The considerable increase in the concentration of NO3 and dilution of Na+ and Cl after rain in April in S1 shows how precipitation may change the chemical composition of the water in a 1-day period. No changes were observed in the concentrations of major ions and nutrients that could be related to the cyclical variation of the hours during the day in both small watersheds. Daily collections allow better monitoring of the dynamics of streams and greater robustness of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Information provided by D. M. L. Silva in Ilheus—Brazil, in 2012.

References

  • Andrade, T. M. B., Camargo, P. B., Silva, D. M. L., Vieira, S. A., Alves, L. F., Joly, C. A., et al. (2011). Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the Coastal Atlantic forest in southeast Brazil. Water, Air, and Soil Pollution, 214, 393–408.

    Article  CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle: geochemistry and environment. Rainwater and atmospheric chemistry. USA, New Jersey: Prentice-Hall, Inc.

  • Bernot, M. J., & Dodds, W. K. (2005). Nitrogen retention, removal, and saturation in Lotic ecosystems. Ecosystems, 8, 442–453.

    Article  CAS  Google Scholar 

  • Brandão, C. S., Chaussê, T. C. C., Silva, L. P., Moreau, M. S., & Silva, D. M. L. (2015). Variabilidade espaço-temporal das cargas dissolvidas de rios em área de proteção ambiental no nordeste brasileiro. Revista Brasileira de Recursos Hídricos, 20(3), 551–559.

  • Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adms, M. B., Castro, M. S., Discooll, C. T., Kahl, J. S., Kochenderfer, J. N., Likens, G. E., Lynch, J. A., Murdoch, P. S., Nelson, S. J., & Shanley, J. B. (2004). Input-output budgets of inorganic nitrogen for 24 forest watersheds in the northeastern united states: A review. Water, Air, and Soil Pollution, 141, 373–396.

  • CEPTEC/INPE (2012). Centro de Previsão de Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais. Proclima – Programa de Monitoramento Climático em Tempo Real da região nordeste. Acesso: http://proclima.cptec.inpe.br/.

  • Chaves, J., Neill, C., Germer, S., Gouveia Neto, S., Krusche, A. V., Bonilla, A. C., & Elsenbeer, H. (2009). Nitrogen transformations in flowpaths leading from soils to streams in Amazon forest and pasture. Ecosystems, 12, 961–972.

    Article  CAS  Google Scholar 

  • Chen, N., & Hong, H. (2011). Nitrogen export by surface runoff from a small agricultural watershed in southeast China: seasonal pattern and primary mechanism. Biogeochemistry. doi:10.1007/s10533-010-9514-6.

    Google Scholar 

  • Chen, N., Wu., J., & Hong, H. (2012). Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China. Science of the Total Environment, 431, 357–365.

  • Deegan, L. A., Neill, C., Haupert, C. L., Ballester, M. V. R., Krusche, A. V., Victoria, R. L., et al. (2011). Amazon deforestation alters small stream structure, nitrogen biogeochemistry and connectivity to larger Rivers. Biogeochemistry, 105, 53–74.

    Article  CAS  Google Scholar 

  • Defries, R., & Eshleman, N. K. (2004). Land-use change and hydrologic processes: a major focus for the future. Hydrological Processes, 18(11), 2183–2186.

    Article  Google Scholar 

  • Dias, H. C. T., Figueira, M. D., Silveira, V., Fontes, M. A. L., Oliveira-Filho, A. T., & Scolforo, J. R. S. (2002). Variação temporal de nutrientes na serapilheira de um fragmento de floresta estacional semidecidual montana em Lavras, MG. Revista CERNE, 8(2), 001–016.

    Google Scholar 

  • Germer, S., Neill, C., Vetter, T., Chaves, J., Krusche, A. V., & Elsenbeer, H. (2009). Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. Journal of Hydrology, 364, 349–363.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. American Association for the Advancement of Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Erhardt, M., & Kremiling, K. (1983). Methods of seawater analysis. Weinhein: Verlag chemie.

    Google Scholar 

  • Halstead, J. A., Kliman, S., Berheide, C. W., Chaucer, A., & Cock-Esteb, C. (2014). Urban stream syndrome in a small, lightly developed watershed, a statistical analysis of water chemistry parameters, land use patterns, and natural sources. Environmental Monitoring and Assessment, 186, 3391–3414.

    Article  CAS  Google Scholar 

  • Harris, G. P. (1987). Time series analysis of water quality data from Lake Ontario: implications for the measurement of water quality in large and small lakes. Freshwater Biology, 18(3), 389–403.

    Article  Google Scholar 

  • Haygarth, P. M., Turner, B. L., Fraser, A., Jarvis, S. C., Harrod, T., Nash, D., et al. (2004). Temporal variability in phosphorus transfers: classifying concentration-discharge event dynamics. Hydrology and Earth System Sciences, 8(1), 88–97.

    Article  CAS  Google Scholar 

  • Hedin, L. O., Armesto, J. J., & Johnson, A. H. (1995). Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology, 76(2), 493–509.

    Article  Google Scholar 

  • House, W. A., & Warwick, M. S. (1998). Hysteresis of the solute concentration/discharge relationship in rivers during storms. Water Research, 32(8), 2279–2290.

    Article  CAS  Google Scholar 

  • Howarth, R., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, T., Marcus, N., McGlathery, K., Sharpley, A., & Walker, D. (2000). Nutrient Pollution of Coastal Rivers, Bays, and Seas. Issues in Ecology Number, 7, 1–15.

  • Keene, W. C., Pszenny, A. A. P., Galloway, J. N., & M. E. Hawley (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation, Journal of Geophysical Research, 91, 6647–6658.

  • Kent, R., Belitz, K., & Burton, C. A. (2005). Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream. Journal of the American Water Resources Association, 41(5), 1109–1128.

  • Leite, N. K., Krusche, A. V., Ballester, M. V. R., Victoria, R. L., Richey, J. E., & Gomes, B. M. (2011). Intra and interannual variability in the Madeira River water chemistry and sediment load. Biogeochemistry, 105(1), 37–51.

  • Lewis, W. M. J., Melack, J. M., Mcdowell, W. H., Mcclain, M., & Richey, J. E. (1999). Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry, 46, 149–162.

    CAS  Google Scholar 

  • Lewis, W. M. J. (2002) Yield of nitrogen from minimally disturbed watersheds of the United States. Biogeochemistry, 57, 375–385.

  • Markewitz, D., Lamon, E. C., III, Bustamante, M. C., Chaves, J., Figueiredo, R. O., Johnson, M. S., Krusche, A., Neill, C., & Silva, J. S. O. (2011). Discharge–calcium concentration relationships in streams of the Amazon and Cerrado of Brazil: soil or land use controlled. Biogeochemistry, 105, 19–35.

    Article  CAS  Google Scholar 

  • Martinelli, L. A., Krusche, A. V., Victoria, R. L., Camargo, P. B., Bernardes, M., Ferraz, E. S., et al. (1999). Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water, Air, and Soil Pollution, 110, 67–79.

    Article  CAS  Google Scholar 

  • Mctammany, M. E., Benfield, E. F., & Webster, J. R. (2007). Recovery of stream ecosystem metabolism from historical agriculture. Journal of the North American Benthological Society, 26, 532–545.

  • Melo, F. P., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., & Tabarelli, M. (2013). On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology & Evolution. doi:10.1016/j.tree.2013.01.001.

    Google Scholar 

  • Metzger, J. P., Martensena, A. C., Dixoa, M., Bernaccib, L. C., Ribeiroa, M. C., & Teixeira, A. M. G. (2009). Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biological Conservation, 142(6), 1166–1177.

    Article  Google Scholar 

  • Mulholland, P. J., Thomas, S. A., Valett, H. M., Webster, J. R., & Beaulieu, J. (2006). Effects of light on NO3 uptake in small forested streams: diurnal and day-to-day variations. Journal of the North American Benthological Society, 3(25), 583–595.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Neill, C., Piccolo, M. C., Steudler, P. A., Melillo, J. M., Feigl, B. J., & Cerri, C. C. (1995). Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biology and Biochemistry, 27(9), 1167–1175.

    Article  CAS  Google Scholar 

  • Neill, C., Piccolo, M. C., Cerri, C. C., Steudler, P. A., Melillo, J. M., & Brito, M. (1997). Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brasilian Amazon Basin landscape. Oecologia, 110(2), 243–252.

    Article  Google Scholar 

  • Neill, C., Deegan, L. A., Thomas, S. M., & Cerri, C. C. (2001). Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecological Applications, 11, 1817–1828.

    Article  Google Scholar 

  • Nimick, D. A., Gammons, C. H., & Parker, S. R. (2011). Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review. Chemical Geology, 283(1–2), 3–17.

    Article  CAS  Google Scholar 

  • Parron, L. M., Bustamante, M. M. C., & Markewitz, D. (2011). Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry, 105(1–3), 89–104.

    Article  CAS  Google Scholar 

  • PESC. (2012). Plano de manejo Parque Estadual da Serra do Conduru. http://www.parquedoconduru.org/o-parque/plano-de-manejo.html. Accessed 17 March 2012.

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153.

    Article  Google Scholar 

  • Rocha, R. R. A., & Thomaz, S. M. (2004). Variação temporal de fatores limnológicos em ambientes da planície de inundação do alto rio Paraná (PR/MS – Brasil). Acta Scientiarum. Biological Sciences, 26(3), 261–271.

    Google Scholar 

  • Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11(3), 141–156.

    Article  Google Scholar 

  • Rusjan, S., Brilly, M., & Mikos, M. (2008). Flushing of nitrate from a forested watershed: an insight into hydrological nitrate mobilization mechanisms through seasonal high frequency stream nitrate dynamics. Journal of Hydrology, 354(1–4), 187–202.

    Article  Google Scholar 

  • Sá, D. F., Almeida, H. A., & Leão, A. C. (1982). Fatores Edafoclimáticos Seletivos ao Zoneamento de Cacauicultura no Sudeste da Bahia. Theobroma, 12, 169–187.

    Google Scholar 

  • Salemi, L. F., Groppo, J. D., Trevisan, R. T., Moraes, J. M., Ferraz, S. F., Villani, J. P., Duarte Neto, P. J., & Martinelli, L. A. (2013). Land-use change in the Atlantic Rain forest region: consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100–109.

    Article  Google Scholar 

  • Salemi, L. F., Groppo, J. D., Trevisan, R., Ferraz, S. F. B., Moraes, J. M., & Martinelli, L. A. (2015). Nitrogen dynamics in hydrological flow paths of a small tropical pasture catchment. Catena, 127, 250–257.

    Article  CAS  Google Scholar 

  • Scholefield, D., Goff, T. L., Braven, J., Ebdon, L., Long, T., & Bulter, M. (2005). Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Science of the Total Environment, 344(1–3), 201–210.

    Article  CAS  Google Scholar 

  • Silva, J. S. O., Bustamante, M. M. C., Markewitz, D., Krusche, A. V., & Ferreira, L. G. (2011). Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry, 105(1–3), 75–88.

    Article  CAS  Google Scholar 

  • Silva, D. M. L., Camargo, P. B., Mcdowell, W. H., Salomão, M. S. M. B., Vieira, I., & Martinelli, L. A. (2012). Influence of land use changes on water chemistry in streams in State of São Paulo, southeast Brazil. Annals Brazilian Academy of Sciences (Impresso), 84(4), 919–930.

    Article  CAS  Google Scholar 

  • Silva, D. M. L., Souza, M.F.L., Silva, F.S., Paula, F.C.F, Moraes, M.E.B, & Strenzel, G.M.R. (2015) Land use effects on nutrient concentration in a small watershed in northeast Brazil. Brazilian Journal of Aquatic Science and Technology (in press).

  • SINDA/INPE (2012). Sistemas Nacional de Dados Ambientais /Instituto Nacional de Pesquisas Espaciais. Acesso: http://sinda.crn2.inpe.br/PCD/SITE/novo/site/index.php.

  • Stallard, R. F., & Edmond, J. M. (1981). Geochemistry of the Amazon. I. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86(10), 9844–9858.

    Article  CAS  Google Scholar 

  • Syvitski, J. P. M., Vorosmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720), 376–380.

    Article  CAS  Google Scholar 

  • Van der Weijden, C. H., & Pacheco, F. A. L. (2006). Hydrogeochemistry in the Vouga River basin (central Portugal): Pollution and chemical weathering. Applied Geochemistry, 21(4), 580–613.

  • Villela, D. M., de Mattos, E. A., Pinto, A. S., Vieira, S. A. & Martinelli, L. A. (2012). Carbon and nitrogen stock and fluxes in coastal Atlantic Forest of southeast Brazil: potential impacts of climate change on biogeochemical functioning. Brazilian Journal of Biology, 72(3), 633–642.

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706–723.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: lake and river ecosystems. San Diego: Academic.

    Google Scholar 

  • Withers, P. J. A., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: a review. Science of the Total Environment, 400(1–3), 379–395.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Fundação de Amparo a Pesquisa do Estado da Bahia (FAPESB-PPP 0040/2011) and CNPq, Universidade Estadual de Santa Cruz (PROPP no. 00220.1100.899) and INCT TMCOcean (CNPq) for the financial support. We also thank the staff at PPGSAT and CTRAN/UESC for the assistance in field collections, AMEK, Jim Hesson, and Cipriana Leme for the English revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Mariano Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaussê, T.C.C., dos Santos Brandão, C., da Silva, L.P. et al. Evaluation of nutrients and major ions in streams—implications of different timescale procedures. Environ Monit Assess 188, 38 (2016). https://doi.org/10.1007/s10661-015-5034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5034-0

Keywords

Navigation