Bioaccumulation of mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans in salty water organisms

Article

Abstract

Mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) accumulate in organisms through food webs and exert potentially toxic effects on aquatic organisms and humans. This study examined the levels of mercury and PCDD/Fs in organisms and sediment samples collected from a saltwater pond at the An-Shun site, a chloralkali factory that shut down in Tainan City, Taiwan. It was also a pentachlorophenol production plant. After the factories were shut down in the 1980s, mercury and PCDD/Fs contamination remained, posing severe health hazards. The correlation between PCDD/Fs congener accumulation patterns in distinct fish organs and the sediment was evaluated. Mercury and PCDD/Fs levels in all the fish samples exceeded food safety limits, and the concentrations of mercury and PCDD/Fs in each species were closely correlated (n = 12, Spearman’s rank correlation [R] = 0.811, p < 0.01). The mercury concentrations were positively but non-significantly correlated with the weight (n = 11, R = 0.741, p < 0.01) and length (n = 11, R = 0.618, p < 0.05) of the species. The fish likely accumulated the contaminants through ingestion of other organisms or the sediment. However, after the pollutants entered a fish, they exhibited distinct accumulation patterns because of their differing chemical properties. Specifically, the mercury concentration was correlated with organism weight and length, whereas the PCDD/Fs concentration was associated with organ lipid content. The study results are valuable for assessing the health risks associated with ingesting mercury- and PCFF/F-contaminated seafood from the study site.

Keywords

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) Mercury (Hg) Biota-to-sediment accumulation factors (BSAFs) Lipid content Trophic level 

References

  1. Alibabić, V., Vahčić, N., & Bajramović, M. (2007). Bioaccumulation of metals in fish of Salmonidae family and the impact on fish meat quality. Environmental Monitoring and Assessment, 131(1–3), 349–364.CrossRefGoogle Scholar
  2. Alonso, D., Pineda, P., Olivero, J., González, H., & Campos, N. (2000). Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Columbia. Environmental Pollution, 109(1), 157–163.CrossRefGoogle Scholar
  3. Arnot, J. A., & Gobas, F. A. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14(4), 257–297.CrossRefGoogle Scholar
  4. Barron, M. G. (1990). Bioconcentration. Will water-borne organic chemicals accumulate in aquatic animals? Environmental Science & Technology, 24(11), 1612–1618.CrossRefGoogle Scholar
  5. Chang, H. J., Wang, S., Li, H. W., Lin, K. H., Chao, C. C., & Lai, Y. C. (2010). Polychlorinated dibenzo-p-dioxins and dibenzofuran contents in fish and sediment near a pentachlorophenol contaminated site. Journal of Environmental Science and Health Part A, 45(8), 923–931.CrossRefGoogle Scholar
  6. Chang, H. J., Wang, S., Wang, Y. F., Li, H. W., & Wang, L. C. (2011a). Contributions of dry and wet depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans to a contaminated site resulting from a penetachlorophenol manufacturing process. Environmental Monitoring and Assessment, 175(1–4), 475–485.CrossRefGoogle Scholar
  7. Chang, J. W., Chen, H. L., Su, H. J., Liao, P. C., Guo, H. R., & Lee, C. C. (2011b). Simultaneous exposure of non-diabetics to high levels of dioxins and mercury increases their risk of insulin resistance. Journal of Hazardous Materials, 185(2), 749–755.CrossRefGoogle Scholar
  8. Chang, J. W., Liao, P. C., & Lee, C. C. (2012). Dietary intake of PCDD/Fs and dioxin-like PCBs from fresh foods around Taiwan. Journal of Food and Drug Analysis, 20(4), 805–813.Google Scholar
  9. Chen, H. H. (2006). Distribution of mercury in fishes and environmental media of a contaminated site and the influence of biological behavior (Master’s thesis). Taipei, Taiwan: National Taiwan University.Google Scholar
  10. Clarkson, T. W. (1992). Mercury: major issues in environmental health. Environmental Health Perspectives, 100, 31–38.CrossRefGoogle Scholar
  11. Connell, D. W. (1990). Bioaccumulation of xenobiotic compounds. Boca Raton, FL: CRC Press.Google Scholar
  12. Cook, P. M., Kuehl, D. W., Walker, M. K., & Peterson, R. E. (1991). Bioaccumulation and toxicity of TCDD and related compounds in aquatic ecosystems. In M. J. Gallo, R. J. Scheuplein, & K. A. Van der Heijden (Eds.), Biological basis for risk assessment of dioxins and related compounds, Banbury Report, Volume 35 (pp. 143–165). New York, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  13. Coleman, P. J., Lee, R. G. M., Alcock, R. E., & Jones, K. C. (1997). Observations on PAH, PCB, and PCDD/F trends in UK urban air 1991–1995. Environmental Science and Technology, 31(7), 2120–2124.CrossRefGoogle Scholar
  14. Debdas, M. (2011). Health impact of polychlorinated dibenzo-p-dioxin: a critical review. Air & Waste Management Association, 48(2), 157–165.Google Scholar
  15. Diliberto, J. J., Burgin, D. E., & Birnbaum, L. S. (1999). Effects of CYP1A2 on disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2′,4,4′,5,5′-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice. Toxicology and Applied Pharmacology, 159(1), 52–64.CrossRefGoogle Scholar
  16. Fiedler, H., Hutzinger, O., & Timms, C. W. (1990). Dioxins: sources of environmental load and human exposure. Toxicological & Environmental Chemistry, 29(3), 157–234.CrossRefGoogle Scholar
  17. Franke, C., Studinger, G., Berger, G., Böhling, S., Bruckmann, U., Cohors-Fresenborg, D., & Jöhncke, U. (1994). The assessment of bioaccumulation. Chemosphere, 29(7), 1510–1514.CrossRefGoogle Scholar
  18. Fries, G. F., Paustenbach, D. J., Mather, D. B., & Luksemburg, W. J. (1999). A congener specific evaluation of transfer of chlorinated dibenzo-p-dioxins and dibenzofurans to milk of cows following ingestion of pentachlorophenol-treated wood. Environmental Science and Technology, 33(8), 1165–1170.CrossRefGoogle Scholar
  19. Gobas, F. A. P. C., & Morrison, H. A. (2000). Bioconcentration and bio-magnification in the aquatic environment. In R. S. Boethling & M. Mackay (Eds.), Handbook of property estimation methods for chemicals (pp. 189–231). Boca Raton, FL: CRC Press.Google Scholar
  20. Guidotti, M., Protano, C., Dominici, C., Chiavarini, S., Cimino, N., & Vitali, M. (2013). Determination of selected polychlorinated dibenzo-p-dioxins/furans in marine sediments by the application of gas-chromatography-triple quadrupole mass spectrometry. Bulletin of Environmental Contamination and Toxicology, 90(5), 525–530.CrossRefGoogle Scholar
  21. Goldman, L. R., Harnly, M., Flattery, J., Patterson, D. G., & Needham, L. L. (2000). Serum polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans among people eating contaminated home-produced eggs and beef. Environmental Health Perspectives, 108(1), 13–19.CrossRefGoogle Scholar
  22. Hamelink, J. L., Landrum, P. F., Bergman, H. L., & Benson, W. H. (Eds.). (1994). Bioavailability: physical, chemical, and biological interactions. SETAC special publication. Boca Raton, FL: CRC Press.Google Scholar
  23. Hornung, H., Krumgalz, B. S., & Cohen, Y. (1984). Mercury pollution in sediments, benthic organisms and inshore fishes of Haifa Bay, Israel. Marine Environmental Research, 12(3), 191–208.CrossRefGoogle Scholar
  24. Huang, S. W. (2006). Mercury and selenium concentrations in fishes from the water reservoir of a chlor-alkali plant in Tainan (Master’s thesis). Kaohsiung, Taiwan: National Sun Yat-Sen University.Google Scholar
  25. Huang, S., Chen, C., & Chen, M. (2008). Total and organic Hg in fish from the reservoir of a chlor-alkali plant in Tainan, Taiwan. Journal of Food and Drug Analysis, 16(2), 75–80.Google Scholar
  26. Johansen, H. R., Alexander, J., Rossland, O. J., Planting, S., Lovik, M., Gaarder, P. I., et al. (1996). PCDDs, PCDFs, and PCBs in human blood in relation to consumption of crabs from a contaminated Fjord area in Norway. Environmental Health Perspectives, 104(7), 756–764.CrossRefGoogle Scholar
  27. Kang, Y. S., Yamamuro, M., Masunaga, S., & Nakanishi, J. (2002). Specific biomagnification of polychlorinated dibenzo-p-dioxins and dibenzofurans in tufted ducks, common cormorants and their prey from Lake Shinji, Japan. Chemosphere, 46(9–10), 1373–1382.CrossRefGoogle Scholar
  28. Kannan, K., Nakata, H., Stafford, R., Masson, G. R., Tanabe, S., & Giesy, J. P. (1998). Bioaccumulation and toxic potential of extremely hydrophobic polychlorinated biphenyl congeners in biota collected at a superfund site contaminated with Aroclor 1268. Environmental Science & Technology, 32(9), 1214–1221.CrossRefGoogle Scholar
  29. Kannan, K. (1999). Clam-sediment accumulation factors for polychlorinated biphenyl congeners at a contaminated estuarine marsh. Toxicological & Environmental Chemistry, 68(1–2), 159–167.CrossRefGoogle Scholar
  30. Kucuksezgin, F., Uluturhan, E., Kontas, A., & Altay, O. (2002). Trace metal concentrations in edible fishes from Izmir Bay, Eastern Aegean. Marine Pollution Bulletin, 44(8), 827–832.CrossRefGoogle Scholar
  31. Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M., et al. (1998). Lessons from Minamata mercury pollution, Japan—after a continuous 22 years of observation. Water Science and Technology, 38(7), 187–193.CrossRefGoogle Scholar
  32. Lee, C. C., Guo, Y. L., Kuei, C. H., Chang, H. Y., Hsu, J. F., Wang, S. T., et al. (2006). Human PCDD/F levels near a pentachlorophenol contamination site in Tainan, Taiwan. Chemosphere, 65(3), 436–448.CrossRefGoogle Scholar
  33. Lee, R. G. M., Green, N. J. L., Lohmann, R., & Jones, K. C. (1999). Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): evidence for the importance of diffuse combustion sources. Environmental Science and Technology, 33(17), 2864–2871.CrossRefGoogle Scholar
  34. Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models Canadian Environmental Modelling Centre, Trent University, Peterborough. Environmental Pollution, 110(3), 375–391.CrossRefGoogle Scholar
  35. Malisch, R., & Kotz, A. (2014). Dioxins and PCBs in feed and food—review from European perspective. Science of the Total Environment, 491, 2–10.CrossRefGoogle Scholar
  36. Milbrath, M. O., Wenger, Y., Chang, C. W., Emond, C., Garabrant, D., Gillespie, B. W., et al. (2009). Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environmental Health Perspectives, 117(3), 417–425.CrossRefGoogle Scholar
  37. Manh, H. D., Kido, T., Tai, P. T., Okamoto, R., Honma, S., Liang, S. X., et al. (2015). Levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in breast milk samples from three dioxin-contaminated hotspots of Vietnam. Science of the Total Environment, 511(2015), 416–422.CrossRefGoogle Scholar
  38. Myers, A. L., Watson-Leung, T., Jobst, K. J., Shen, L., Besevic, S., Organtini, K., et al. (2014). Complementary nontargeted and targeted mass spectrometry techniques to determine bioaccumulation of halogenated contaminants in freshwater species. Environmental Science & Technology, 48(23), 13844–13854.CrossRefGoogle Scholar
  39. Naito, W., Jin, J., Kang, Y. S., Yamamuro, M., Masunaga, S., & Nakanishi, J. (2003). Dynamics of PCDDs/DFs and coplanar-PCBs in an aquatic food chain of Tokyo Bay. Chemosphere, 53(4), 347–362.CrossRefGoogle Scholar
  40. Olson, J. R. (1994). Pharmacokinetics of dioxin and related chemicals. In A. Schecter (Ed.), Dioxins and health (pp. 163–197). New York, NY: Plenum Press.CrossRefGoogle Scholar
  41. Otter, R. R., Bailey, F. C., Fortner, A. M., & Adams, S. M. (2012). Trophic status and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals. Ecotoxicology and Environmental Safety, 85, 30–36.CrossRefGoogle Scholar
  42. Pickard, S. W., & Clarke, J. U. (2008). Benthic bioaccumulation and bioavailability of polychlorinated dibenzo-p-dioxins/dibenzofurans from surficial Lake Ontario sediments. Journal of Great Lakes Research, 34(3), 418–433.CrossRefGoogle Scholar
  43. Sakurai, T., Kim, J. G., Suzuki, N., Matsuo, T., Li, D. Q., Yao, Y., et al. (2000). Ploychlorinated dibenzo-p-dioxins and dibenzofurans in sediment, soil, fish, shellfish and crab samples from Tokyo Bay area, Japan. Chemosphere, 40(6), 627–640.CrossRefGoogle Scholar
  44. Scoville, S. A., & Lane, O. P. (2013). Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus. Bulletin of Environmental Contamination and Toxicology, 90(5), 616–620.CrossRefGoogle Scholar
  45. Sin, D. W. M., Choi, J. Y. Y., & Louie, K. K. (2002). A study of polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Hong Kong. Chemosphere, 47(6), 647–653.CrossRefGoogle Scholar
  46. Spacie, A., McCarty, L. S., & Rand, G. M. (1995). Bioaccumulation and bioavailability in multiphase systems. In G. M. Rand (Ed.), Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment (2nd ed., pp. 493–521). Washington, DC: Taylor and Francis.Google Scholar
  47. Stahl, L. L., Snyder, B. D., Olsen, A. R., & Pitt, J. L. (2009). Contaminants in fish tissue from US lakes and reservoirs: a national probabilistic study. Environmental Monitoring and Assessment, 150(1-4), 3–19.CrossRefGoogle Scholar
  48. Tillitt, D. E., Ankley, G. T., Giesy, J. P., Ludwig, J. P., Kurita-Matsuba, H., Weseloh, D. V., et al. (1992). Polychlorinated biphenyl residues and egg mortality in double-crested cormorants from Great Lakes. Environmental Toxicology and Chemistry, 11(9), 1281–1288.CrossRefGoogle Scholar
  49. Turoczy, N. J., Mitchell, B. D., Levings, A. H., & Rajendram, V. S. (2001). Cadmium, copper, mercury, and zinc concentrations in tissues of the King Crab (Pseudocarcinus gigas) from southeast Australian waters. Environment International, 27(4), 327–334.CrossRefGoogle Scholar
  50. Tyler, A. O., Millward, G. E., Jones, P. H., & Turner, A. (1994). Polychlorinated dibenzo-p-dioxins and dibenzofurans in sediments from UK estuaries. Estuarine, Coastal and Shelf Science, 39(1), 1–13.CrossRefGoogle Scholar
  51. U.S. Environmental Protection Agency. (1994). Tetra-through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS, Revision B, Method-1613B.Google Scholar
  52. U.S. Environmental Protection Agency. (2000). Exposure and human health reassessment of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) and related compounds National Academy Sciences Review Draft, EPA/600/P-00/001Bb.Google Scholar
  53. U. S. Environmental Protection Agency (USEPA). (2010). Persistent organic pollutants: a global issue, a global response. Washington DC: United States Environmental Protection Agency.Google Scholar
  54. Van der Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57–149.CrossRefGoogle Scholar
  55. van Ede, K. I., Andersson, P. L., Gaisch, K. P., van den Berg, M., & van Duursen, M. B. (2014). Comparison of intake and systemic relative effect potencies of dioxin-like compounds in female rats after a single oral dose. Archives of Toxicology, 88(3), 637–646.CrossRefGoogle Scholar
  56. Wang, I. C., & Lee, W. J. (2010). Polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofurans and polychlorinated biphenyls in farmed fish, water, sediment, and feed. Journal of Environmental Science and Health Part A, 45(2), 201–210.CrossRefGoogle Scholar
  57. Wang, M. S., Wang, C. L., Chang-Chien, G. P., & Lin, L. F. (2005). Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans in the stack flue gas of a municipal solid waste incinerator, in the ambient air, and in the banyan leaf. Aerosol and Air Quality Research, 5(2), 171–184.Google Scholar
  58. Xu, W., Yunhe, H., Hung, Y. S., & Yuexian, Z. (2013). A comparative analysis of Spearman’s rho and Kendall’s tau in normal and contaminated normal models. Signal Processing, 93, 261–276.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiRepublic of China
  2. 2.MWH Americas Inc., Taiwan BranchTaipeiRepublic of China

Personalised recommendations